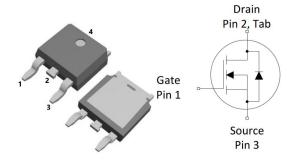
DESCRIPTION

The AM40N10D is available in TO-252 Package.

BVDSS	RDSON	ID
100V	22mΩ	40A

FEATURE

- Low Gate Charge
- Low C_{iss}
- Fast switching
- Improved dv/dt Capability


APPLICATIONS

- Power Switching Application
- LED Drive Power
- Power Management for DC/DC

ORDERING INFORMATION

Package Type	Part Number		
TO-252	D	AM40N10DVR	
SPQ: 2,500pcs/Reel	ט	AIVI40IN IODVK	
Note	R: Tape & Reel		
Note	V: Halogen free Package		
AiT provides all RoHS products			

PIN DESCRIPTION

TO-252

Pin#	Symbol	Function
1	G	Gate
2,4	D	Drain
3	S	Source

ABSOLUTE MAXIMUM RATINGS

Tc = 25°C, unless otherwise specified

TC - 25 C, unless otherwise specified.			
V _{DSS} , Drain-Source Voltage		100V	
V _{GSS} , Gate-Source Voltage		±20V	
I _D , Drain Current-Continuous	T _C = 25°C	40A	
(Package Limited)	T _C = 100°C	24A	
I _{DM} , Pulsed Drain Current *		160A	
E _{AS} , Single Pulse Avalanche Energy	L=0.5mH, V _D =50V, T _C =25°C	180mJ	
P _D , Maximum Power Dissipation		83W	
T _{STG} , Storage Temperature Range		-55°C ∼ +150°C	
T _J , Operating Junction Temperature Range		-55°C ∼ +150°C	
TL, Maximum Lead Temperature for Soldering Purposes,		260°C	
1/8"from Case for 5 Seconds		260 C	
R _{th(ch-c)} , Thermal Resistance, Channel to Case		1.50°C/W	

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

REV1.0 - Feb 2025 RELEASED - -1

^{*} Repetitive Rating: pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS

 $T_C = 25^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	B _{VDSS}	V _{GS} = 0V, I _D = 250μA	100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V, V _{GS} =0V			1	μΑ
Gate-Body Leakage Current, Forward	I _{GSSF}	V _{GS} =20V, V _{DS} =0V			100	nA
Gate-Body Leakage Current, Reverse	I _{GSSR}	V _{GS} = -20V, V _{DS} =0V			-100	nA
Gate-Source Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	-	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} = 10V, I _D = 20A	-	18	22	mΩ
Forward Transconductance	g fs	V _{DS} = 5V, I _D = 15A	-	18.8	-	S
Dynamic Characteristics					•	
Input Capacitance	Ciss	V _{DS} =25V, V _{GS} =0V, f=1.0MHZ	-	3030	-	pF
Output Capacitance	Coss		-	182	-	
Reverse Transfer Capacitance	Crss		-	152	-	
Turn-On Delay Time	t _{d(on)}		-	12	-	
Turn-On Rise Time	t r	V_{DD} =50V, R_{G} =3 Ω , V_{GS} =10V, I_{D} =30A	-	9	-	ns
Turn-Off Delay Time	t _{d(off)}		-	20	-	
Turn-Off Fall Time	t _f		-	18	_	
Gate charge Characteristics						
Total Gate Charge	Qg)/ 00\/ L 05\/	-	65	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} = 80V , I _D =25V	-	21	-	
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	20	-	
Reverse Diode						
Continuous Diode Forward Current	ls	-	-	-	40	Α
Pulsed Diode Forward Current	Isм	-	-	-	160	Α
Diode Forward Voltage	V _{SD}	I _S =20A, V _{GS} =0V	-	-	1.20	V

^{*} Pulse text: Pulse width \leq 300 μ s, Duty Cycle \leq 2%.

REV1.0 - Feb 2025 RELEASED - - 2 -

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Typical Output Characteristics

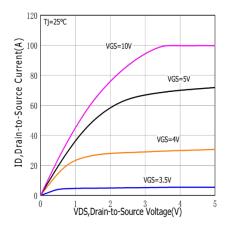


Fig 3. Typical Body Diode Transfer Characteristics

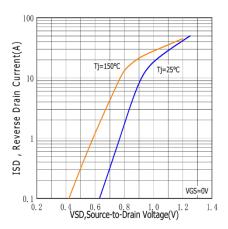


Fig 5. Typical Breakdown Voltage vs. Junction Temperature

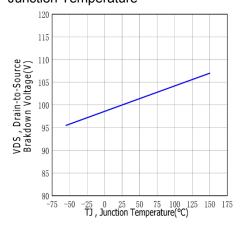


Fig 2. Typical Gate Charge vs. Gate to Source Voltage

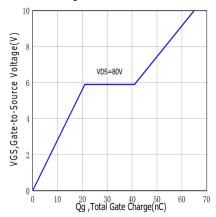


Fig 4. Typical Capacitance vs. Drain to Source Voltage

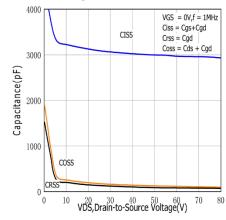
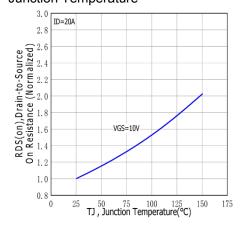



Fig 6. Typical Drain to Source on Resistance vs. Junction Temperature

REV1.0 - Feb 2025 RELEASED - - 3 -

Fig 7. Maximum Forward Bias Safe Operating Area

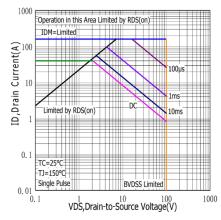


Fig 9. Maximum EAS vs. Channel Temperature

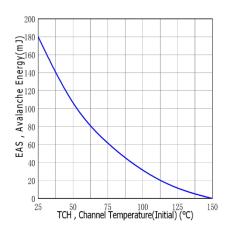


Fig 11. Typical Transfer Characteristics

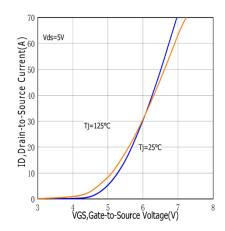


Fig 8. Typical Drain to Source ON Resistance vs. Drain Current



Fig 10. Typical Threshold Voltage vs.

Case Temperature

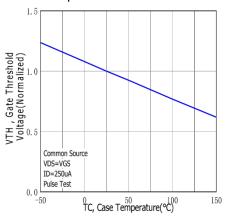
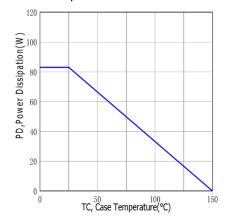



Fig 12. Maximum Power Dissipation vs.

Case Temperature

REV1.0 - Feb 2025 RELEASED - - 4 -

Fig 13. Maximum Effective Thermal Impedance, Junction to Case

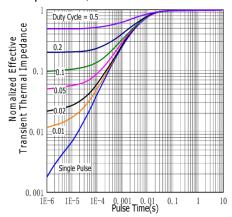


Fig 14. Peak Diode Recovery dv/dt Test Circuit

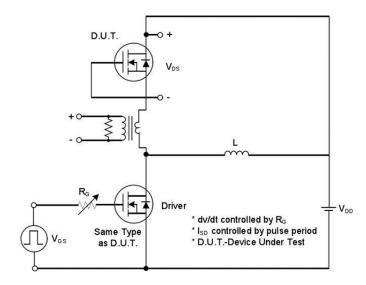
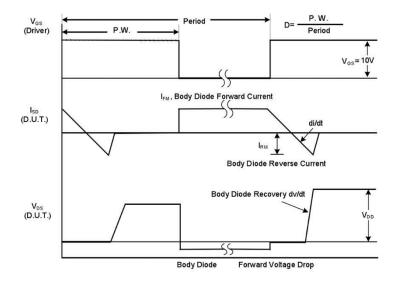



Fig 15. Peak Diode Recovery dv/dt Waveforms

REV1.0 - Feb 2025 RELEASED - - 5 -

Fig 16. Switching Test Circuit

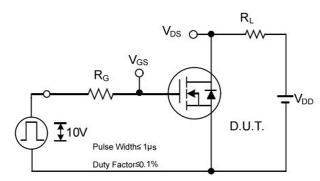


Fig 17. Switching Waveforms

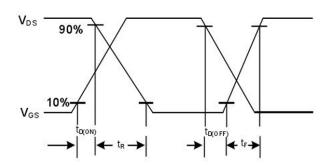


Fig 18. Gate Charge Test Circuit

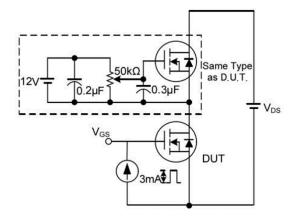


Fig 19. Gate Charge Waveform

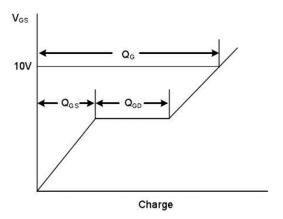
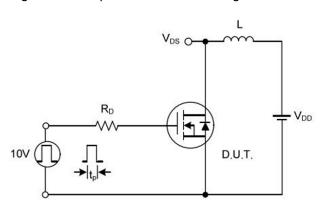
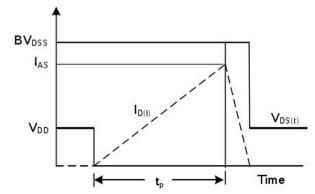
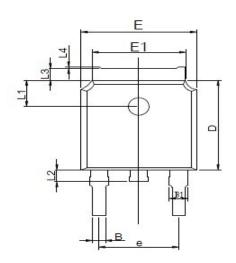
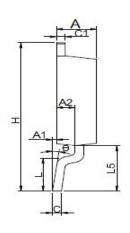
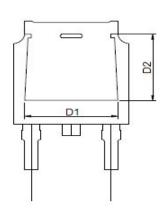


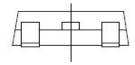
Fig 20. Unclamped Inductive Switching Test Circuit

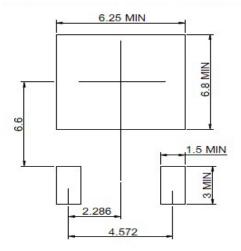

Fig 21. Unclamped Inductive Switching Waveforms




REV1.0 - Feb 2025 RELEASED - - 6 -


PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)



RECOMMENDED LAND PATTERN

	Millimeter			
Symbol	Min.	Max.		
А	2.150	2.450		
A1	0.050	0.200		
A2	0.910	1.220		
В	0.660	0.860		
B1	0.930	1.230		
С	0.400	0.600		
C1	0.400	0.600		
D	5.950	6.250		
D1	4.800			
D2	3.800			
Е	6.450	6.750		
E1	5.120	5.520		
L	1.650			
L1	1.580	1.980		
L2	0.600	1.000		
L3	0.700	1.000		
L4	0.000	0.200		
L5	2.800	3.400		
Н	9.800	10.400		
θ	0°	8°		
е	4.572 REF			

REV1.0 - Feb 2025 RELEASED - - 7 -

AM40N10D MOSFET 100V, 40A N-CHANNEL

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - Feb 2025 RELEASED - - 8 -