DESCRIPTION

The AL244 is an octal non-inverting buffer/driver with 3-state outputs. The 3-state outputs are controlled by the output enable inputs $1\overline{OE}$ and $2\overline{\,0E}$. A High on $\overline{\,0E}$ causes the outputs to assume a high impedance OFF-state.

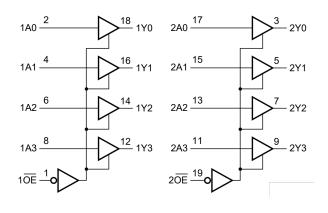
Vcc supporting operating voltage from 1.65 V to 5.5 V.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor, the minimum value of the resistor is determined by the currentsinking capability of the driver.

The AL244 is available in SOP20 and TSSOP20 Packages.

ORDERING INFORMATION

Package Type	Part Number		
SOP20	M20	AL244M20R	
SPQ:1,500pcs/Reel	IVIZU	AL244M20VR	
TSSOP20	TMX20	AL244TMX20R	
SPQ:4,000pcs/Reel	TIVIAZU	AL244TMX20VR	
Note	V: Halogen free Package R: Tape & Reel		
AiT provides all RoHS products			

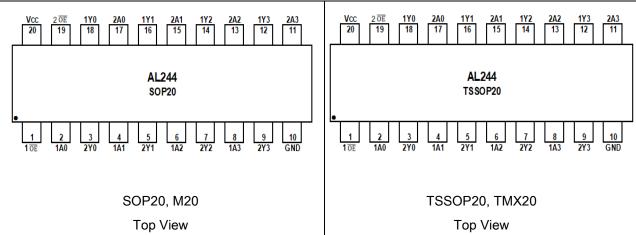

FEATURES

- Power-Supply Range: 1.65V ~ 5.5V
- Vcc Isolation: If Vcc is at GND, Both Ports are in the High-Impedance State.
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Extended Temperature: -40°C to +125°C

APPLICATION

- **Network Switches**
- Power Infrastructures
- PCs and Notebooks
- Wearable Health and Fitness Devices
- **Tests and Measurements**

LOGIC SYMBOL



REV1.0 - OCT 2024 RELEASED -

AiT Semiconductor Inc. www.ait-ic.com

PIN DESCRIPTION

PI	N#			
SOP20	TSSOP20	Symbol	I/O	Function
1	1	1 0 E	Ι	Output Enable (Active Low). Pull 10E High to Place all Outputs in 3-State Mode.
2	2	1A0	I	Input
3	3	2Y0	0	Output
4	4	1A1	I	Input
5	5	2Y1	0	Output
6	6	1A2	I	Input
7	7	2Y2	0	Output
8	8	1A3	1	Input
9	9	2Y3	0	Output
10	10	GND	G	Ground.
11	11	2A3	I	Input
12	12	1Y3	0	Output
13	13	2A2	I	Input
14	14	1Y2	0	Output
15	15	2A1	I	Input
16	16	1Y1	0	Output
17	17	2A0	I	Input
18	18	1Y0	0	Output
19	19	2 0 E	Ι	Output Enable (Active Low). Pull 20E High to Place all Outputs in 3-State Mode.
20	20	Vcc	Р	Supply Voltage.1.65V ≤ V _{CC} ≤ 5.5V

I=Input, O=Output, P=Power

REV1.0 - OCT 2024 RELEASED -- 2 -

FUNCTION TABLE

Inp	Output	
 OE	A Port	Y Port
L	Н	Н
L	L	L
Н	X	Hi-Z

H=High Voltage Level L=Low Voltage Level X=Don't Care

Z=Hing Impedance OFF-State

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

over operating free-air temperature range (unless otherwise noted)			
Vcc, Supply Voltage Range		-0.5V ~ + 6.5V	
W. Janust Voltage Dange (1)	A Port	-0.5V ~ + 6.5V	
V _I , Input Voltage Range (1)	Control Inputs	-0.5V ~ + 6.5V	
Vo, Voltage Range Applied to any Output in the High-Impedance or Power-Off State (1)	Y Port	-0.5V ~ + 6.5V	
V _O , Voltage Range Applied to any Output in the High or Low State (1) (2)	Y Port	-0.5V ~ + V _{CC} +0.5V	
I _{IK} , Input Clamp Current	V _I <0	-50mA	
Іок, Output Clamp Current	Vo<0	-50mA	
Io, Continuous Output Current	±50mA		
Io, Continuous Current through VCCA, VCCB or GND	±100mA		
T _J , Junction Temperature	150°C		
T _{STG} , Storage Temperature	-65°C ~ +150°C		

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (2) The value of V_{CC} is provided in the Recommended Operating Conditions table.

ESD RATINGS

Parameter	Symbol	Min	Unit
Human-Body Model (HBM)	V Floatmostatic Dischause	±3000	V
Machine Model (MM)	V _(ESD) Electrostatic Discharge	±400	V

REV1.0 - OCT 2024 RELEASED - - 3

RECOMMENDED OPERATING CONDITIONS

 $V_{\rm CC}$ is the supply voltage associated with the input port and output port.

Parameter	Symbol		Conditions	Min	Max	Unit	
Supply Voltage	Vcc		-	1.65	5.5		
			V _{CC} =1.65 V ~1.95 V	Vcc x 0.65	-		
Libert and beautivales	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	V _{CC} = 2.3 V ~2.7 V	1.7	-	V	
High-Level Input Voltage	ViH	Inputs	V _{CC} =3 V ~3.6 V	2	-		
			V _{CC} =4.5 V ~5.5 V	Vcc x 0.7	-		
			V _{CC} =1.65 V ~1.95 V	-	V _{CC} x 0.35		
Lave Lavel Innext Valtage	.,,	1	V _{CC} = 2.3 V ~2.7 V	-	0.7		
Low-Level Input Voltage	V _{IL}	Inputs	V _{CC} =3 V ~3.6 V	-	0.8	V	
			V _{CC} =4.5 V ~5.5 V	-	Vcc x 0.3		
Input Voltage	Vı	-		0	5.5	V	
Output Voltage	Vo		-	0	Vcc	V	
	I _{OH}	V _{CC} =1.65V ~1.95V		-	-4	mA	
High Lavel Output Compant		V _{CC} = 2.30 V ~2.70 V		-	-8		
High-Level Output Current		V _{CC} =3V ~3.60 V		-	-24		
		V _{CC} =4.50V ~5.50V		-	-32		
		V _{CC} =1.6	5V ~1.95V	-	4		
Lave Lavel Outset Ormant		V _{CC} = 2.30 V ~2.70 V		-	8		
Low-Level Output Current	loL	V _{CC} =3V	~3.60 V	-	24	mA	
		V _{CC} =4.5	0V ~5.50V	-	32		
			V _{CC} =1.65V ~1.95V		20		
Input Transition Rise or Fall	0.170	Date	V _{CC} = 2.30 V ~2.70 V	-	20		
Rate	Δt/Δν	Inputs	V _{CC} =3V ~3.60 V	-	10	ns/V	
			V _{CC} =4.50V ~5.50V	-	5		
Operating Free-Air Temperature	TA		-	-40	125	°C	

^{*}All unused or driven (floating) data inputs (I/Os) of the device must be held at logic HIGH or LOW (preferably V_{CC} or GND) to ensure proper device operation and minimize power.

REV1.0 - OCT 2024 RELEASED - - 4 -

^{*}All unused control inputs must be held at Vcc or GND to ensure proper device operation and minimize power consumption.

^{*}For V_{CC} values not specified in the data sheet, V_{IH} min = V_{CC} × 0.7 V, V_{IL} max = V_{CC} × 0.3 V.

 $T_A = +25^{\circ}C$ (unless otherwise noted)

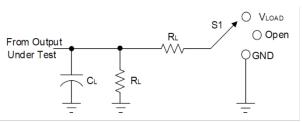
ELECTRICAL CHARACTERISTICS

Symbol	Conditions	Min	Тур.	Max	Unit	
	I_{OH} = -100 μ A, V_{I} = V_{IH} , V_{CC} = 1.65 V ~ 4.5 V		Vcc ~0.1	-	ı	
	$I_{OH} = -4mA$, $V_I = V_{IH}$, $V_{CC} = 1.65V$		1.2	-	-	
Voн	$I_{OH} = -8mA$, $V_{I} = V_{IH}$, $V_{CC} = 2.3V$	-40°C ~ +125°C	1.9	-	ı	V
	$I_{OH} = -24$ mA, $V_I = V_{IH}$, $V_{CC} = 3$ V		2.4	-	-	
	$I_{OH} = -32 \text{mA}, V_I = V_{IH}, V_{CC} = 4.5 \text{V}$		3.8	-	-	
	I_{OL} = -100 μ A, V_{I} = V_{IL} , V_{CC} = 1.65 V ~ 4.5 V		-	-	0.1	
	$I_{OL} = 4mA$, $V_{I} = V_{IL}$, $V_{CC} = 1.65V$	1000 10500			0.45	
Vol	$I_{OL} = 8mA$, $V_{I} = V_{IL}$, $V_{CC} = 2.3V$	mA, V _I = V _{IL} , V _{CC} = 2.3V -40°C ~ +125°C			0.30	V
	$I_{OL} = 24$ mA, $V_I = V_{IL}$, $V_{CC} = 3$ V				0.55	
	$I_{OL} = 32 \text{mA}, V_I = V_{IL}, V_{CC} = 4.5 \text{V}$				0.55	
l ₁	V _I = 5.5V or GND, V _{CC} = 5.5V	+25°C	-	-	±1	μΑ
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+25°C	-	-	±1	μΑ
l _{off}	V_1 or $V_0 = 0$ to 5.5V, $V_{CC} = 0$ V	-40°C ~ +125°C	-	-	±2	
loz	$V_0 = V_{CC}$ or GND, $\overline{OE} = V_{IH}$	+25°C	-	-	±1	μA
TOZ	V _{CC} = 1.65V ~ 5.5V	-40°C ~ +125°C	-	-	±2	μΛ
Las	$V_1 = V_{CC}$ or GND, $I_0 = 0$,	+25°C	-	-	1	
lcc	V _{CC} = 1.65V ~ 5.5V	-40°C ~ +125°C	-	-	5	μΑ
V _{cc} supply current	$V_1 = V_{CC}$ or GND, $I_0 = 0$, $V_{CC} = 0V$	-40°C ~ +125°C	-	-	-2	
ΔΙσο	One A port at V _{CC} – 0.6V, Y port = open, V _{CC} = 3V~5.5V	-40°C ~ +125°C	-	-	50	μΑ
Cı	V _I = V _{CC} or GND, V _{CC} = 3.30V	+25°C	-	8.50	-	pF
Co	$V_1 = V_{CC}$ or GND, $V_{CC} = 3.30V$	+25°C	-	8.50	-	pF

SWITCHING CHARACTERISTICS

Symbol	From	To	V _{cc} = ±0.		V _{cc} = ±0.	2.5V .2V	V _{CC} = ±0.		V _{CC} :		Unit
	(Input)	(Output)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	An	Yn	1.7	21.6	1.3	9.1	1.0	7.4	0.8	7.1	ns
t PHL	7.11	111	1.7	21.0	1.5	5.1	1.0	7.7	0.0	7.1	13
t PHZ	ŌĒ	Yn	2.4	32.2	1.9	12.9	1.7	12	1.3	10.2	ns
t _{PLZ}	OL	111	2.4	52.2	1.5	12.5	1.7	12	1.5	10.2	113
t pzh	$\overline{\text{OE}}$	Yn	1.8	31.9	1.5	16	1.2	12.6	0.9	10.8	ns
t PZL	OE	111	1.0	31.9	1.5	10	1.2	12.0	0.9	10.0	115

OPERATING CHARACTERISTICS


Parameter	Symbol	Conditions	V _{CC} =1.8V Typ.	V _{CC} =2.5V Typ.	V _{CC} =3.3V Typ.	V _{CC} =5V Typ.	Unit
Outputs Enabled	C .	$C_L = 0$, f = 10MHz,	42	42	43	44	nE
Outputs Disabled	C _{pd}	tr = tf = 1ns	2	2	2	3	pF

Power dissipation capacitance per transceiver

REV1.0 - OCT 2024 RELEASED -- 5 -

AiT Semiconductor Inc.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tplн/tpнl	Open
t _{PIZ} /t _{PZL}	V_{LOAD}
t _{PHZ} /t _{PZH}	GND

Vcc	VI	VM	CL	RL	V _{TP}
1.8V±0.15V	Vcc	Vcc/2	15pF	2kΩ	0.15V
2.5V±0.2V	Vcc	Vcc/2	15pF	2kΩ	0.15V
3.3V±0.3V	2.7V	1.5V	15pF	2kΩ	0.3V
5V±0.5V	2.7V	1.5V	15pF	2kΩ	0.3V

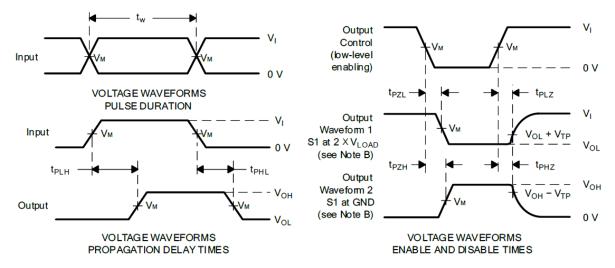


Fig 1. Load Circuit and Voltage Waveforms

- (A) C_L includes probe and jig capacitance.
- (B) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (C) All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z₀ = 50 Ω, v/dt≥1V/ns.
- (D) The outputs are measured one at a time, with one transition per measurement.
- (E) All parameters and waveforms are not applicable to all devices.

REV1.0 - OCT 2024 RELEASED - - 6 -

www.ait-ic.com

AiT Semiconductor Inc.

TYPICAL CHARACTERISTICS

T_A=25°C, Vcc =5V (unless otherwise noted)

Fig 1. Voltage vs. Current

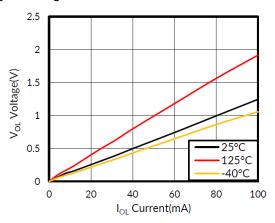
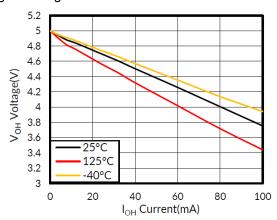
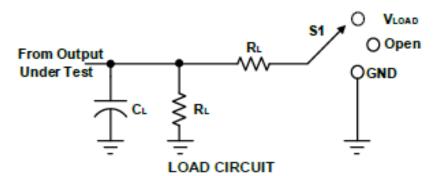



Fig 2. Voltage vs. Current

BLOCK DIAGRAM



REV1.0 - OCT 2024 RELEASED -

www.ait-ic.com

PARAMETER MEASUREMENT INFORMATION

TEST	S 1
t _{PLH} /t _{PHL}	Open
t _{PIZ} /t _{PZL}	V_{LOAD}
tpHz/tpzH	GND

Vcc	VI	VM	CL	RL	V _{TP}
1.8V±0.15V	Vcc	V _{CC} /2	15pF	2kΩ	0.15V
2.5V±0.2V	Vcc	Vcc/2	15pF	2kΩ	0.15V
3.3V±0.3V	2.7V	1.5V	15pF	2kΩ	0.3V
5V±0.5V	2.7V	Vcc/2	15pF	2kΩ	0.3V

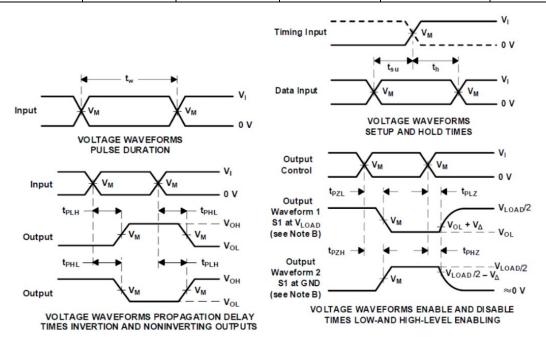
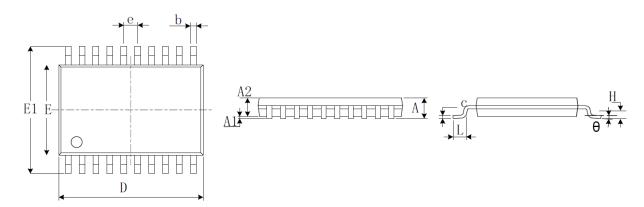
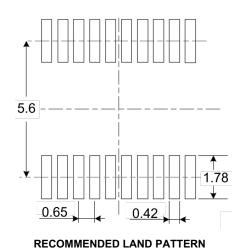


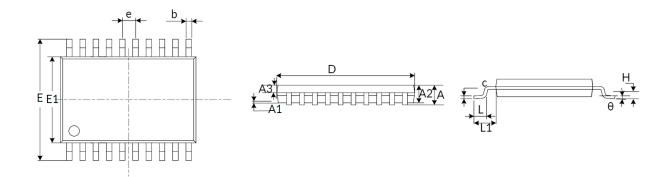
Fig 1. Load Circuit and Voltage Waveforms

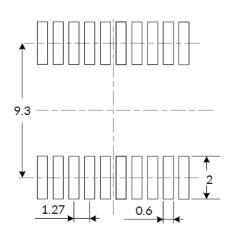

- (A) C_L includes probe and jig capacitance.
- (B) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (C) All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z₀ = 50 Ω.
- (D) The outputs are measured one at a time, with one transition per measurement.
- (E) All parameters and waveforms are not applicable to all devices.


REV1.0 - OCT 2024 RELEASED -- 8 -

PACKAGE INFORMATION

Dimension in TSSOP20 Package (Unit: mm)




Symbol	Millimeters		
Symbol	Min	Max	
Α	-	1.200	
A1	0.050	0.150	
A2	0.800	800 1.050	
b	0.200	0.280	
С	0.130	0.170	
D	6.400	6.600	
е	0.650 BSC		
E	4.300	4.500	
E1	6.200	6.600	
L	0.450	0.750	
Н	0.250 TYP.		
θ	0°	8°	

REV1.0 - OCT 2024 RELEASED - - 9 -

AiT Semiconductor Inc. www.ait-ic.com

Dimension in SOP20 Package (Unit: mm)

RECOMMENDED LAND PATTERN

Council of	Millimeters		
Symbol	Min	Max	
А	-	2.650	
A1	0.100	0.300	
A2	0.250	2.350	
A3	0.970	1.070	
b	0.390	0.470	
С	0.250	0.290	
D	12.700	12.900	
Е	10.100	10.500	
E1	7.400	7.600	
е	1.270 BSC.		
L	0.700	1.000	
Н	0.250 TYP.		
θ	0°	8°	
L1	1.400 REF.		

REV1.0 - OCT 2024 RELEASED - - 10 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - OCT 2024 RELEASED - - 11 -