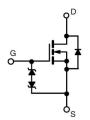
DESCRIPTION

The AM01N70 is available in SOT-23 Package.

BVDSS	RDSON	ID
700V	8.3Ω	1A

APPLICATION


- Low Power Battery chargers
- SMPS
- Low Power, Ballast, CFL

PIN DESCRIPTION

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	Го	AM01N70E3VR	
SPQ: 3,000pcs/Reel	E3	AIVIO INTOESVR	
Note	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			

SOT-23

Pin#	Symbol	Function
1	G	Gate
2	S	Source
3	D	Drain

ABSOLUTE MAXIMUM RATINGS

T_A=25°C Unless otherwise noted

V _{DS} , Drain-Source Voltage		700V
V _{GS} , Gate-Source Voltage		±30V
L. Continuous Prain Current	T _A =25°C	1A
I _D , Continuous Drain Current	T _A =100°C	0.6A
I _{DM} ⁽¹⁾ , Pulsed Drain Current		4A
E _{AS} ⁽²⁾ , Single Pulse Avalanche		6.05mJ
T _J , Operating Junction Temperature		-55°C~+150°C
T _{STG} , Storage Temperature		-55°C~+150°C
T∟, Lead Temperature (1/16" from case for 10sec.)		300°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) Repetitive rating, pulse width limited by junction temperature $T_J(MAX)=150$ °C.
- (2) The EAS data shows Max. rating. The test condition is V_{DD} =-90V, V_{DS} =650V, L=10mH

REV1.0 - MAR 2025 RELEASED - - 1

ELECTRICAL CHARACTERISTICS

T_J=25°C, unless otherwise noted.

T _J =25°C, unless otherwise noted.						
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Static Parameters						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250μA	700	-	-	V
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2	3	4	V
Gate-Body Leakage	Igss	V _{DS} =0V, V _{GS} =±30V	-	-	±1	μΑ
Zero Gate Voltage Drain Current		V _{DS} =650V, V _{GS} =0V	-	-	10	μΑ
	IDSS	V _{DS} =650V, V _{GS} =0V,			400	
		T _J =150°C	-	-	100	
On-State Drain Current	R _{DS(ON)}	V _{GS} =10V, I _D =0.5A	-	8.3	9.5	Ω
Body Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _{SD} =1A,	_	0.98	1.4	V
		T _J =25°C				
Dynamic Characteristics		1		1	ı	
Input Capacitance	Ciss	- V _{DS} =25V, V _{GS} =0V, - f=100KHz	-	38	-	
Output Capacitance	Coss		-	34	-	pF
Reverse Transfer Capacitance	Crss		-	4	-	
Total Gate Charge	Q_g	\/=100\/\\/=10\/	-	9.4	-	nC
Gate-Source Charge	Q _{gs}	V _{DD} =100V, V _{GS} =10V	-	3.1	-	
Gate-Drain Charge	Q_{gd}	I _D =1A	-	1.6	-	
Switching Characteristics						
Turn-on Delay Time	t _(on)		-	3.5	-	
Rise Time	tr	V _{DS} =100V, V _{GS} =10V	-	16	-	ns
Turn-Off Delay Time	t _(off)	R _G =25Ω, I _D =1A	-	14	-	
Fall Time	t _f		-	43.3	-	
Drain-Source Body Diode Charac	cteristics					
Forward Voltage	V _{SD}	V _{GS} =0V, I _F =I _S	-	0.98	-	V
Continuous Current	Is	-	-	-	1	Α
Body Diode Reverse Recovery	<u> </u>	I _F =1A,	-	204	-	nS
Time	Trr					
Body Diode Reverse Recovery		di/dt =100A/us		400		0
Charge	Q _{rr}		_	402	_	μC

REV1.0 - MAR 2025 RELEASED - - 2 -

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Output Characteristics

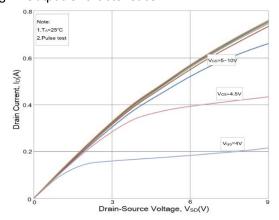


Fig 3. Gate Charge characteristics

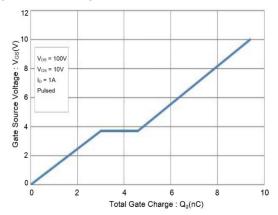


Fig 5. Is vs. V_{SD}

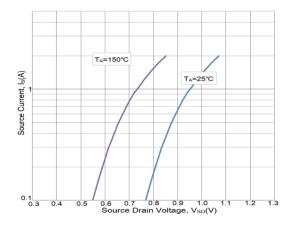


Fig 2. $R_{DS(on)} vs. I_D$

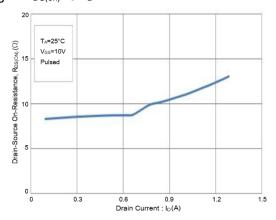


Fig 4. In vs. Vgs

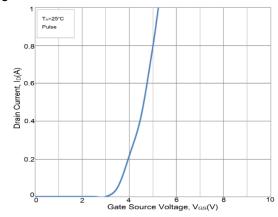
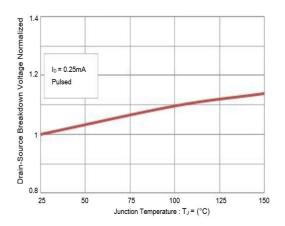



Fig 6. Breakdown vs. Temperature

REV1.0 - MAR 2025 RELEASED - - 3 -

Fig 7. On-Resistance vs. Junction Temperature

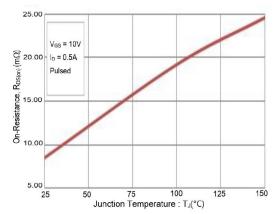


Fig 8. V_{th} vs. Junction Temperature

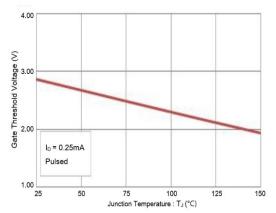
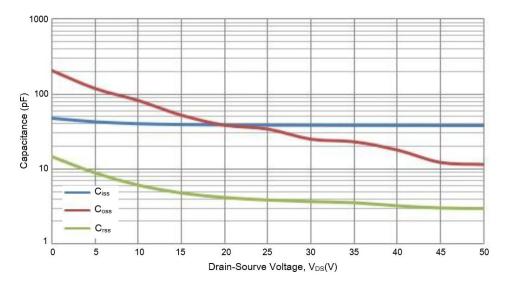
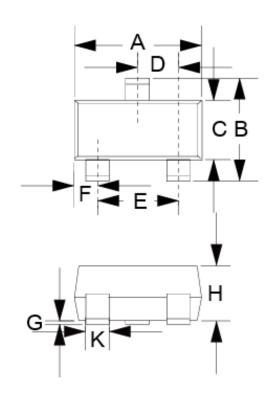
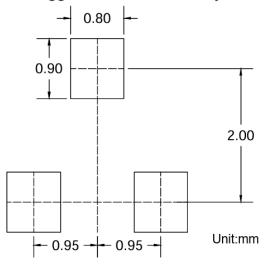



Fig 9. Capacitance characteristics



REV1.0 - MAR 2025 RELEASED - - 4 -


PACKAGE INFORMATION

Dimension in SOT-23 (Unit: mm)

Suggested Solder Pad Layout

Complete all	MILLIMETER			
Symbol	Min.	Max.		
Α	2.800	3.040		
В	2.100	2.640		
С	1.200	1.400		
D	0.850	1.050		
Е	1.700	2.100		
F	0.450	0.600		
G	0.010	0.150		
Н	0.900	1.100		
J	0.080	0.180		
K	0.300	0.510		
L	0.200	0.500		

REV1.0 - MAR 2025 RELEASED - - 5 -

AM01N70 MOSFET 700V 1A N-CHANNEL

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - MAR 2025 RELEASED - - 6 -