DESCRIPTION

The AL245 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (\overline{OE}) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode.

The AL245 transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports is always active and must have a logic High or Low level applied to prevent excess I_{CC} and I_{CCZ}.

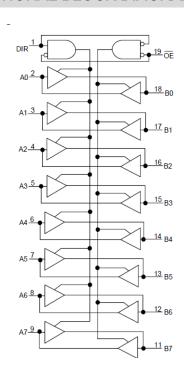
This AL245 is fully specified for partial-power-down applications using I_{OFF}. The I_{OFF} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, all outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, (\overline{OE}) should be tied to V_{CC} through a pullup resistor, the minimum value of the resistor is determined by the current-sinking capability of the driver.

The AL245 is available in SOP20 and TSSOP20 packages.

ORDERING INFORMATION

Package Type	Part Number			
SOP20	M20	AL245M20R		
SPQ: 1500pcs/Reel	IVIZU	AL245M20VR		
TSSOP20	TMV00	AL245TMX20R		
SPQ:4,000pcs/Reel	TMX20	AL245TMX20VR		
Note	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- 1.65V to 5.5V Operation
- V_{CC} Isolation: If VCC is at GND, Both Ports are in the High-Impedance State
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Extended Temperature: -40°C to +125°C

APPLICATION

- Servers
- LED Displays
- Network Switches
- Telecom Infrastructure
- Motor Drivers
- I/O Expanders
- Handset
- Smartphone
- Tablet
- Desktop PC

FUNCTIONAL BLOCK DIAGRAM

REV1.0 -1-

PIN DESCRIPTION

Pin#		Symbol I/O		Function	
SOT-25	SC70-5	Symbol	1/0	Function	
1	1	DIR	I	direction control	
2	2	A0	I/O	Input/output	
3	3	A1	I/O	Input/output	
4	4	A2	I/O	Input/output	
5	5	A3	I/O	Input/output	
6	6	A4	I/O	Input/output	
7	7	A5	I/O	Input/output	
8	8	A6	I/O	Input/output	
9	9	A7	I/O	Input/output	
10	10	GND	G	Ground.	
11	11	B7	I/O	Input/output	
12	12	В6	I/O	Input/output	
13	13	B5	I/O	Input/output	
14	14	B4	I/O	Input/output	
15	15	В3	I/O	Input/output	
16	16	B2	I/O	Input/output	
17	17	B1	I/O	Input/output	
18	18	В0	I/O	Input/output	
19	19	ŌĒ	I	Output Enable (Active Low). Pull $\overline{\text{OE}}$ high to place all outputs in 3- state mode.	
20	20	Vcc	Р	supply voltage. 1.65V≤VCC≤5.5V	

REV1.0 -2-

FUNCTION TABLE

Input		Out	tput	ODERATION	
ŌĒ	DIR	A PORT	B PORT	OPERATION	
L	L	Enabled	Hi-Z	B data to A	
L	Н	Hi-Z	Enabled	A data to B	
Н	Х	Hi-Z	Hi-Z	Isolation	

H=HIGH voltage level

L=LOW voltage level

X=don't care

Z=high impedance OFF-state

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range, unless otherwise noted (1)

over operating nee-all temperature rang	over operating free-all temperature range, unless otherwise noted to					
V _I , Input Voltage Range ⁽²⁾		A port	-0.5V ~ 6.5V			
		B port	-0.5V ~ 6.5V			
		Control inputs	-0.5V ~ 6.5V			
V _O ⁽²⁾ , Voltage range applied to any ou	tput in the	A port	-0.5V ~ 6.5V			
high-impedance or power-off state		B port	-0.5V ~ 6.5V			
V _O ^{(2)(3),} Voltage range applied to any o	utput in the	A port	-0.5V ~ Vcc+0.5V			
high or low state		B port	-0.5V ~ V _{CC} +0.5V			
I _{IK} , Input Clamp Current		V _I <0	-50mA			
Іок, Output Clamp Current		V ₀ <0	-50mA			
Io, Continuous Output Current			±50mA			
Continuous Current Through Vcc or G	ND		±100mA			
T _J , Junction Temperature			150°C			
T _{STG} , Storage Temperature		-65°C ∼ 150°C				
ESD Ratings	ESD Ratings					
V _(ESD) , Electrostatic Discharge	Human-boo	ly model (HBM)	±3000V			
	Machine mo	odel (MM)	±400V			
		-				

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

REV1.0 - 3 -

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the Recommended Operating Conditions table.

RECOMMENDED OPERATING CONDITIONS

Vcc is the supply voltage associated with the input port and output port. (1)(2)

Paramet	ter	Symbol	Conditions	Min.	Max.	Unit	
Supply Voltage		Vcc		1.65	5.5	٧	
			V _{CC} =1.65V to 1.95V	Vccx0.65	-		
			V _{CC} =2.3V to 2.7V	1.7	-		
High-level input volta	age	ViH	V _{CC} =3V to 3.6V	2.2	-	V	
			V _{CC} =4.5V to 5.5V	Vccx0.7	-		
			V _{CC} =1.65V to 1.95V	-	V _{cc} x0.35		
			V _{CC} =2.3V to 2.7V	-	0.7		
Low-level input volta	ge	VıL	V _{CC} =3V to 3.6V	-	0.8	V	
			V _{CC} =4.5V to 5.5V	-	Vccx0.3		
Input voltage		Vı		0	5.5	V	
Acti	Active state	V		0	Vcc	٧	
Input/output voltage	3-state	V _{I/O}		0	5.5	٧	
		Іон	V _{CC} =1.65V to 1.95V	-	-4	mA	
High lovel output ou	rant		V _{CC} =2.3V to 2.7V	-	-8		
High-level output cur	rent		V _{CC} =3V to 3.6V	-	-24		
			V _{CC} =4.5V to 5.5V	-	-32		
			1.65V to 1.95V	-	4		
Low lovel output our	rant	Las	V _{CC} =2.3V to 2.7V	-	8		
Low-level output cur	rent	Іоь	V _{CC} =3V to 3.6V	-	24	mA	
			V _{CC} =4.5V to 5.5V	-	32		
			V _{CC} =1.65V to 1.95V	-	20		
Input transition rise		Data inputs	V _{CC} =2.3V to 2.7V	-	20		
or fall rate(Δt/Δv)		Data inputs	V _{CC} =3V to 3.6V	-	10	ns/V	
			V _{CC} =4.5V to 5.5V	-	5		
T _A Operating free-a	ir temperature			-40	125	°C	

⁽¹⁾ All unused or driven (floating) data inputs (I/Os) of the device must be held at logic High or Low preferably V_{CC} or GND) to ensure proper device operation and minimize power.

REV1.0 -4-

⁽²⁾ All unused control inputs must be held at V_{CC} or GND to ensure proper device operation and minimize power consumption.

⁽³⁾ For V_{CC} values not specified in the data sheet, V_{IH} min = $V_{CC} \times 0.7$ V, V_{IL} max = $V_{CC} \times 0.3$ V.

ELECTRICAL CHARACTERISTICS

	Parameter	Conditions	Temp	Min.	Тур.	Max.	Unit
		I _{OH} = -100µA, V _I =V _{IH}		Vcc-	_	_	
		V _{CC} =1.65V to 5.5V		0.1	_		
		I _{OH} =-4mA, V _I =V _{IH}		1.2	_	_	
		V _{CC} =1.65V					
V_{OH}		I _{OH} =-8mA, V _I =V _{IH}	-40°C~+125°C	1.9	_	_	V
- 0		Vcc=2.3V	-				
		I _{OH} =-24mA, V _I =V _{IH}		2.4	-	_	
		V _{CC} =3V	_				
		I _{OH} =-32mA, V _I =V _{IH} V _{CC} =4.5V		3.8	-	-	
		I _{OL} =100μA, V _I =V _{IL}					
		V _{CC} =1.65V to 4.5V		-	-	0.1	
		I _{OL} =4mA, V _I =V _{IL}	-				
		Vcc=1.65V		-	-	0.45	
		I_{OL} =8mA, V_I = V_{IL}	†				
V_{OL}		V _{CC} =2.3V	-40°C~+125°C	-	-	0.3	V
		I _{OL} =24mA, V _I =V _{IL}				0.55	1
		V _{CC} =3V		-	-	0.55	
		I _{OL} =32mA, V _I =V _{IL}	1			0.55	
		V _{CC} =4.5V		ı	-	0.55	
lı	DIR	V _I =5.5V or GND,	+25°C	-	-	-	μΑ
11	DIIX	V _{CC} = 1.65V to 5.5V	-40°C~+125°C	-	-	-	
I_{off}	A or B Port	V_1 or V_0 = 0 to 5.5V,	+25°C	-	_	_	μA
	71012101	V _{CC} =0V					μ, ,
l _{oz}	A or B Port	VO = VCC or GND, OE=V _{IH}	+25°C	-	-	-	
		V _{CC} = 1.65V to 5.5V	-40°C~+125°C	-	-	-	
Icc	A or B Port	V ₁ =5.5V or GND, I ₀ =0,	+25°C	-	-	-	μA
		V _{CC} =1.65V to 5.5V	-40°C~+125°C	-	-	-	
		One input at V _{CC} - 0.6V, DIR at VCC,					
	A Port	B port = open					
		V _{CC} =3V to 5.5V					
		One B port at V _{CC} - 0.6 V, DIR at	-				
		GND,					
ΔI_{CC}	B Port	A port = open	-40°C~+125°C	-	-	-	μΑ
		V _{CC} =3V to 5.5V					
		DIR at V _{CC} – 0.6 V,	1				
	DID	B port = open					
	DIR	A port at vcc or GND					
	Control	VI = V _{CC} or GND	10500				
Сі	Control inputs	V _{CC} = 3.3V	+25°C	ı	_	-	μA
Cıo		A Port	+25°C	-	8.5	-	pF
OIO		B Port	+25°C	-	8.5	-	рF

REV1.0 -5-

TYPICAL PERFORMANCE CHARACTERISTICS

At $T_A = 25^{\circ}C$ $V_{CC}=5V$, (unless otherwise noted)

Fig1 Voltage vs Current

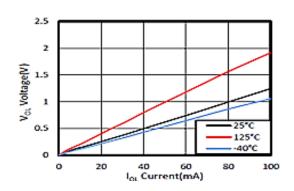
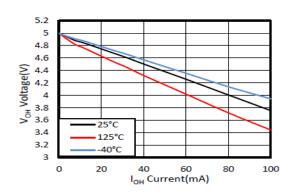
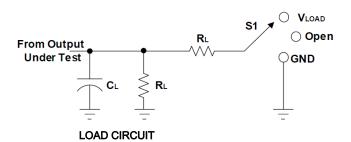



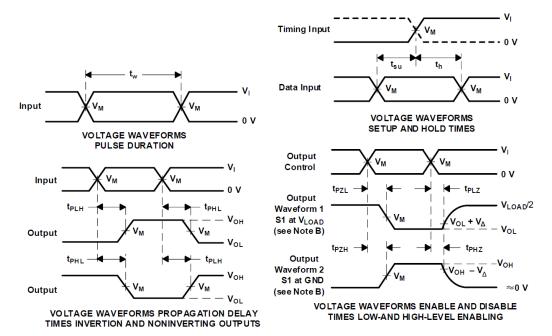
Fig2 Voltage vs Current

AC ELECTRICAL CHARACTERISTICS


Parameter	Form	TO	V _{CC} = ±0.	1.8V 15V	V _{CC} = ±0.		V _{CC} = ±0.		Vcc ±0.		Unit
	(Input)	(Output)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t PLH	An	Bn	1.70	21.6	1.30	9.10	1.0	7.4	0.80	7.10	ns
t PHL	ΛΠ	וֹם	1.70	21.0	1.50	9.10	1.0	7.4	0.00	7.10	113
t _{PLH}	Bn	An	0.90	23.5	0.80	23.6	0.7	23.3	0.70	23.3	ns
t PHL	DII	AII	0.90	23.5	0.60	23.0	0.7	23.3	0.70	25.5	115
t PHZ	ŌĒ	An	1.50	29.5	1.50	29.4	1.5	29.3	1.40	29.1	ns
t PLZ	OL	ΔH	1.50	29.5	1.50	23.4	1.5	29.5	1.40	29.1	113
t PHZ	ŌĒ	Bn	2.40	32.2	1.90	12.9	1.7	12.0	1.30	10.2	ns
t PLZ	OL	וום	2.40	32.2	1.90	12.9	1.7	12.0	1.30	10.2	115
t PZH	ŌĒ	An	0.40	23.8	0.40	23.7	0.4	23.7	0.40	23.7	no
t PZL	OE	All	0.40	23.0	0.40	23.1	0.4	23.1	0.40	23.1	ns
t PZH	ŌĒ	Bn	1.80	31.9	1.50	16	1.2	12.6	0.90	10.8	ns
t pzL	OE	ווט	1.00	51.8	1.50	10	1.2	12.0	0.90	10.6	115

Parameter		Test	VCC=1.8V	VCC=2.5V	VCC=3.3V	VCC=5V	Unit
	Parameter	Conditions	Тур	Тур	Тур	Тур	Unit
_	A-port input, B-port output		2	2	2	3	_
B-port input, A-port out	B-port input, A-port output	f=10MHz, t _{r=} t _f =1ns	42	42	43	44	pF

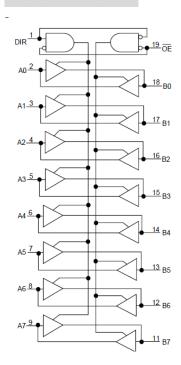
⁽¹⁾ Power dissipation capacitance per transceiver


REV1.0 -6-

PARAMETER MEASURE MENT INFORMATION

TEST	S1
tplH/tpHL	Open
t _{PLZ} /t _{PZL}	V_{LOAD}
t _{PHZ} /t _{PZH}	GND

Vcc	Vı	V _M	CL	RL	VΔ
1.8V±0.15V	Vcc	Vcc/2	15pF	2kΩ	0.15V
2.5V±0.2V	Vcc	Vcc/2	15pF	2kΩ	0.15V
3.3V±0.3V	2.7V	1.5V	15pF	2kΩ	0.3V
5.0V±0.5V	2.7V	1.5V	15pF	2kΩ	0.3V


NOTE A: C_L includes probe and jig capacitance.

- B: Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C: All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50\Omega$. dv/dt \geq 1V/ns.D: The outputs are measured one at a time, with one transition per measurement.
 - E: t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - F: t_{PZL} and t_{PZH} are the same as t_{en}.
 - G: t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H: All parameters and waveforms are not applicable to all devices.

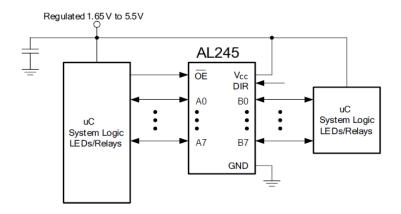
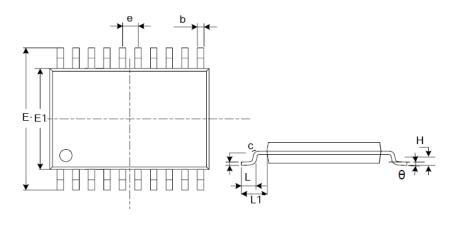
Fig3. Load Circuit and Voltage Waveforms

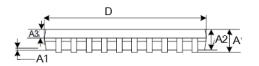
REV1.0 -7-

BLOCK DIAGRAM

APPLICATION INFORMATION

AL245 is a high drive CMOS device that can be used for a multitude of bus interface type applications where output drive or PCB trace length is a concern. The inputs can accept voltages to $5.5 \, \text{V}$ at any valid V_{CC} making it ideal for down translation.

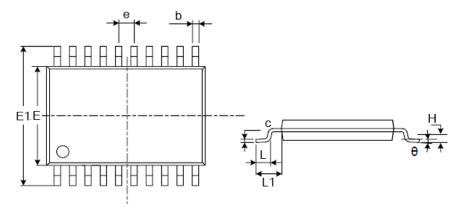




Fig4 Typical Application Schematic

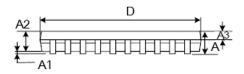
REV1.0 -8-

PACKAGE INFORMATION

Dimension in SOP20 (Unit: mm)


RECOMMENDED LAND PATTERN

Complete	Millimeters				
Symbol	Min	Max			
А	-	2.650			
A1	0.100	0.300			
A2	2.250	2.350			
A2	0.970	1.070			
b	0.390	0.470			
С	0.250	0.290			
D	12.700	12.900			
Е	10.100	10.500			
E1	7.400	7.600			
е	1.270	BSC			
L	0.700	1.000			
Н					
θ	0°	8 °			
L1	1.400 REF				


REV1.0 -9-

Dimension in TSSOP20 (Unit: mm)

RECOMMENDED LAND PATTERN

Cumbal	Millimeters				
Symbol	Min	Max			
А	-	1.200			
A1	0.050	0.150			
A2	0.800	1.050			
A3	0.390	0.490			
b	0.200	0.290			
С	0.130	0.170			
D	6.400	6.600			
Е	4.300	4.500			
E1	6.200	6.600			
е	0.650	(BSC)			
L	0.450	0.750			
Н	0.250TYP				
θ	0°	8°			
L1	0.390(REF)				

REV1.0 - 10 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - 11 -