

AiT Semiconductor Inc.

8-BIT BIDIRECTIONAL VOLTAGE-SHIFTING, VOLTAGE TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS

DESCRIPTION

The AL0108-Q is an 8-bit non-inverting level translator that uses two separate configurable power-supply rails. The A ports tracks the V_{CCA} pin supply voltage. The V_{CCA} pin accepts any supply voltage between 1.65V to 5.5V. The B port tracks the V_{CCB} pin supply voltage. The V_{CCB} pin accepts any supply voltage between 2.3V to 5.5V. Two input supply pins allows for low Voltage bidirectional translation between any of the 1.8V, 2.5V, 3.3V and 5V voltage nodes.

www.ait-ic.com

When the output-enable (OE) input is low, all are placed in the high-impedance (Hi-Z) state.

To ensure the Hi-Z state during power-up or powerdown periods, tie OE to GND through a pull-down resistor. The minimum value of the resistor is determined by the current-sourcing capability of the driver.

AL0108-Q operates over an ambient temperature range of -40°C to +125°C.

-40 C to +125 C.

The AL0108-Q is available in TSSOP20 package.

ORDERING INFORMATION

Package Type	Part Number				
TSSOP20	TMY20				
SPQ: 4,000pcs/Reel		ALUTUOTIMAZUVR-Q			
Nata	V: Halogen free Package				
Note	R: Tape & Reel				
AiT provides all PoHS products					

AiT provides all RoHS products

FEATURES

- No Direction-Control Signal Needed
- Maximum Date Rates
 - 24Mbps (Push-Pull)

2Mbps (Open-Drain)

- 1.65V to 5.5V on A ports and 2.3V to 5.5V on B Ports (V_{CCA}≤V_{CCB})
- No Power-Supply Sequencing Required: Either V_{CCA} or V_{CCB} can be Ramped First
- V_{CC} Isolation: If Either V_{CC} is at GND, Both Ports are in the High-Impedance State
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Extended Temperature: -40°C to +125°C
- AECQ Certificated

APPLICATION

- Automotive Infotainment
- Advance Driver Assistance Systems (ADAS)
- Telematics

TYPICAL APPLICATION CIRCUIT

www.ait-ic.com

8-BIT BIDIRECTIONAL VOLTAGE-SHIFTING, VOLTAGE TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS

PIN DESCRIPTION

B1 Vccs B2 B3 B4 B5 B6 B7 B8 GND 20 19 18 17 16 19 14 13 12 11								
			TSSOP20					
			[]					
			1 2 3 4 5 6 7 8 9 10 A1 Vcca A2 A3 A4 A5 A6 A7 A8 OE					
			TSSOP20, TMX20					
			Top View					
PIN#	Symbol	Туре	Function					
1 11877	Oymbol	(1)						
1	A1	I/O	Input/output A1. Reference to V _{CCA} .					
2	VCCA	Р	A Port Supply Voltage.1.65V \leq V _{CCA} \leq 5.5V and V _{CCA} \leq V _{CCB} .					
3	A2	I/O	Input/output A2. Reference to V _{CCA} .					
4	A3	I/O	Input/output A3. Reference to V _{CCA.}					
5	A4	I/O	Input/output A4. Reference to V _{CCA} .					
6	A5	I/O	Input/output A5. Reference to V _{CCA} .					
7	A6	I/O	Input/output A6. Reference to V _{CCA} .					
8	A7	I/O	Input/output A7. Reference to V _{CCA} .					
9	A8	I/O	Input/output A8. Reference to V _{CCA} .					
10			Output Enable (Active High). Pull OE low to place all outputs in 3-state					
10	UE	I	mode. Referenced to V _{CCA} .					
11	GND	_	Ground.					
12	B8	I/O	Input/output B8. Reference to V _{CCB} .					
13	B7	I/O	Input/output B7. Reference to V _{CCB} .					
14	B6	I/O	Input/output B6. Reference to V _{CCB} .					
15	B5	I/O	Input/output B5. Reference to V _{CCB} .					
16	B4	I/O	Input/output B4. Reference to V _{CCB} .					
17	B3	I/O	Input/output B3. Reference to V _{CCB} .					
18	B2	I/O	Input/output B2. Reference to V _{CCB} .					
19	Vссв	Р	B Ports Supply Voltage.2.3V \leq V _{CCB} \leq 5.5V.					
20	B1	I/O	Input/output B1. Reference to V _{CCB.}					

(1) I=input, O=output, I/O=input and output, P=power

ABSOLUTE MAXIMUM RATINGS

www.ait-ic.com

Over operating free-air temperature range, unless otherwise noted

V _{CCA} , Supply Voltage Range		-0.3V ~ 6.0V
V _{CCB} , Supply Voltage Range	-0.3V ~ 6.0V	
	A port	-0.3V ~ 6.0V
V _I , Input Voltage Range ⁽¹⁾	B port	-0.3V ~ 6.0V
	OE	-0.3V ~ 6.0V
V_{O} , Voltage range applied to any output in the	A port	-0.3V ~ 6.0V
high-impedance or power-off state ⁽¹⁾	B port	-0.3V ~ 6.0V
V_{O} , Voltage range applied to any output in the	A port	-0.3V ~ V _{CCA} +0.3V
high or low state (1)(2)	B port	-0.3V ~ V _{CCB} +0.3V
I _{IK} , Input Clamp Current	V ₁ <0	-50mA
I _{OK} , Output Clamp Current	V ₀ <0	-25mA
Io, Continuous Output Current		±50mA
Continuous current through V_{CCA} , V_{CCB} or GND	±100mA	
θ_{JA} , Package thermal impedance $^{(3)}$		40°C/W
T _J , Junction Temperature ⁽⁴⁾		-40°C ~ 150°C
T _{STG} , Storage Temperature		-65°C ~ 150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed

(2) The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

(3) The package thermal impedance is calculated in accordance with JESD-51.

(4) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A) / R_{\theta_{JA}}$. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

The following ESD information is provided for handing of ESD-sensitive devices in an ESD protected area only.

	Human-body model (HBM), per AEC-Q100-002*	±2000V
V _(ESD) , Electrostatic Discharge	Charged-Device Model (CDM), per AEC-Q100-011	±1000V
	Latch-Up (LU), per AEC-Q100-004	±200mA

*AEC-Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

8-BIT BIDIRECTIONAL VOLTAGE-SHIFTING, VOLTAGE TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS

RECOMMENDED OPERATING CONDITIONS

www.ait-ic.com

V_{CCI} is the supply voltage associated with the input port. V_{CCO} is the supply voltage associated with the output port.				
V _{CCI} is the supply voltage associated with the input port. V _{CCO} is the supply voltage associated with the output port.		d contribution of the second second A.V.	the file of a constraint of the life of a second	and a standard constant of the standard standard standard standard standard standard standard standard standard
	Veel is the subbit voltage associate	1 WITH THE INDUIT DOLL V.C.C.	∧ is the subbly voltage as	

Parameter	Symbol	Conditions	Min	Тур.	Мах	Unit
	Vcca	-	1.65	-	5.5	V
Supply voltage	Vccb	-	2.3	-	5.5	V
	A part 1/Op	V _{CCA} =1.65V to 1.95V V _{CCB} =2.3V to 5.5V	Vcci - 0.2	-	Vcci	V
High-level input	A-port I/Os	V _{CCA} =2.3V to 5.5V V _{CCB} =2.3V to 5.5V	Vccı - 0.4	-	Vcci	V
voltage (V⊮)	B-port I/Os	V _{CCA} =1.65V to 5.5V V _{CCB} =2.3V to 5.5V	Vcci - 0.4	-	Vcci	V
	OE input	V _{CCA} =1.65V to 5.5V V _{CCB} =2.3V to 5.5V	V _{CCA} x 0.8	-	5.5	V
	A-port I/Os	V _{CCA} =1.65V to 5.5V V _{CCB} =2.3V to 5.5V	0	-	0.15	V
Low-level input voltage (V _{IL})	B-port I/Os	V _{CCA} =1.65V to 5.5V V _{CCB} =2.3V to 5.5V	0	-	0.15	V
	OE input	V _{CCA} =1.65V to 5.5V V _{CCB} =2.3V to 5.5V	0	-	V _{CCA} x 0.25	V
Input transition rise or	-	A-port I/Os push-pull driving	-	-	10	ns/V
Input transition rise or fall rate(Δt/Δv)	-	B-port I/Os push-pull driving	-	-	10	ns/V
	-	Control input	-	-	10	ns/V
Operating Free-air Temperature	T _A	-	-40	-	125	°C

(1) V_{CCA} must be less than or equal to V_{CCB} .

(2) The maximum V_{IL} value is provided to ensure that a valid V_{OL} is maintained. The V_{OL} value is V_{IL} plus the voltage drop across the pass gate transistor.

8-BIT BIDIRECTIONAL VOLTAGE-SHIFTING, VOLTAGE TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS

ELECTRICAL CHARACTERISTICS

www.ait-ic.com

over recommended operating free-air temperature range (unless otherwise noted) (1) (2) (3)

	Parameter	Conditions	VCCA	V _{ССВ}	Temp	Min ⁽⁴⁾	Typ ⁽⁵⁾	Max (4)	Unit
Vона	Port A Output High Voltage	I _{OH} = - 20μA V _{IB} ≥ V _{CCB} - 0.4V	1.65V to 5.5V	2.3V to 5.5V	Full	V _{CCA} × 0.7	-	5.5	
Vola	Port A OutputLow Voltage	I _{OL} = 1mA V _{IB} ≤ 0.15V	1.65V to 5.5V	2.3V to 5.5V	Full	-	-	0.3	V
V _{OHB}	Port B Output High Voltage	I _{OH} = - 20µA V _{IA} ≥ V _{CCA} - 0.4V	1.65V to 5.5V	2.3V to 5.5V	Full	V _{ссв} × 0.7	-	-	V
Volb	Port B OutputLow Voltage	I _{OL} = 1mA V _{IA} ≤ 0.15V	1.65V to 5.5V	2.3V to 5.5V	Full	-	-	0.3	
L.	Input Leakage		1.65V to	2.3V to	+25℃	-	-	±2	
	Current		5.5V	5.5V	Full	-	-	±3	μΑ
		A Ports	01/	0V to 5 5V	+25℃	-	-	±0.5	ΠА
loff	Partial Power		00	00 10 0.00	Full	-	-	±1	μΛ
1011	Down Current	B Ports	0V to	0V	+25°C	-	-	±0.5	μA
	Llich Incredence		5.5V		Full	-	-	±1	•
I _{OZ} (6)	State Output	A or B Port OE=0V	1.65V to 5.5V	2.3V to 5.5V	+25°C Full	-	-	±0.5 ±1	μA
		Iy $V_1 = V_0 = open$ $I_0 = 0$	1.65V to V _{ССВ}	2.3V to 5.5V	Full	-	-	2.0	
ICCA	Current		5.5V	0V	Full	-	-	2.0	μA
			0V	5.5V	Full	-	-	-1	
	V _{CCB} Supply	V _{CCB} Supply V ₁ = V ₀ = open		2.3V to 5.5V	Full	-	-	20	
ICCB	Current	I _O = 0	5.5V	0V	Full	-	-	-1	μΑ
			0V	5.5V	Full	-	-	1	
Ісса + Іссв	Combined Supply Current	$V_1 = V_0$ or open $I_0 = 0$	1.65V to V _{ССВ}	2.3V to 5.5V	Full	-	-	30	μA
Iccza	V _{CCA} Supply Current	$V_{I} = V_{CCI} \text{ or } 0V$ $I_{O} = 0, OE=0V$	1.65V to V _{CCB}	2.3V to 5.5V	Full	-	-	1	μA
Ісств	V _{CCB} Supply Current	$V_{I} = V_{CCI}$ or $0V$ $I_{O} = 0$, OE=0V	2.3V to 5.5V	2.3V to 5.5V	Full	-	-	1	μA
Cı	Input Capacitance	OE	3.3V	3.3V	+25℃	-	2.5	-	pF
6	Input-to-output	A port	3.3V	3.3V	+25°C	-	5	-	
C _{IO}	Internal Capacitance	B port	3.3V	3.3V	+25°C	-	5	-	p⊢

(1)V_{CCI} is the V_{CC} associated with the input port (2)V_{CCO} is the V_{CC} associated with the output port (3)V_{CCA} must be less or equal to V_{CCB}. (4)Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical equality control (SQC) method.

(5) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

(6)For I/O ports, the parameter IOZ includes the input leakage current.

TIMING REQUIREMENTS

www.ait-ic.com

V_{CCA}=1.8V±0.15V

		V _{CCB} =2.5V±0.2V	V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	
		ТҮР	ТҮР	ТҮР	Unit
Data rate	Push-pull driving	21	22	24	
	Open-drain driving	2	2	2	Mbps
Pulse	Push-pull driving (data inputs)	47	45	41	
duration(t _w)	Open-drain driving (data inputs)	500	500	500	ns

V_{CCA}=2.5V±0.15V

		V _{CCB} =2.5V±0.2V	V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	
		ТҮР	ТҮР	ТҮР	Unit
Data rate	Push-pull driving	20	22	24	
	Open-drain driving	2	2	2	Mbps
Pulse	Push-pull driving (data inputs)	50	45	41	
duration(t _w)	Open-drain driving (data inputs)	500	500	500	ris

V_{CCA}=3.3V±0.15V

		V _{CCB} =3.3V±0.2V	V _{CCB} =5V±0.2V	
		ТҮР	ТҮР	Unit
Data rate	Push-pull driving	23	24	
	Open-drain driving	2	2	Mbps
Pulse	Push-pull driving (data inputs)	43	41	
duration(t _w)	Open-drain driving (data inputs)	5000	200	ns

$V_{CCA}=5V\pm0.15V$

		V _{CCB} =5V±0.2V	
		ТҮР	Unit
Data rate	Push-pull driving	24	
	Open-drain driving	2	Mbps
Pulse	Push-pull driving (data inputs)	41	
duration(t _w)	Open-drain driving (data inputs)	500	ns

SWITCHING CHARACTERISTICS

www.ait-ic.com

V_{CCA}=1.8V±0.15V

Parameter		Conditions		V _{ссв} : ±0	V _{ссв} =2.5V ±0.2V		V _{CCB} =3.3V ±0.2V		V _{ссв} =5V ±0.2V	
					MAX	MIN	MAX	MIN	MAX	
	Propagation delay		Push-pull driving	1.2	3.8	1.5	4.7	2.2	6.8	
t _{PHL}	time high-to-low output	A-to-B	Open-drain driving	1.3	39.2	13.2	39.6	13.3	40	ns
	Propagation delay		Push-pull driving	2.1	6.3	1.8	5.6	1.8	5.4	
t _{PLH}	time low-to-high output	A-to-B	Open-drain driving	110	332	91.5	275	71.5	215	ns
	Propagation delay		Push-pull driving	1.0	3.2	1.0	3.0	1.1	3.3	
L PHL	time nign-to-low output	B-10-A	Open-drain driving	13	39.2	13	39.2	13.1	39.3	ns
	Propagation delay		Push-pull driving	0.9	2.7	0.8	2.4	0.7	2.3	
t _{PLH}	time low-to-high output	B-to-A	Open-drain driving	86.5	260	44.5	134	33	99	ns
t _{en}	Enable time	OE-to-A or B		12.5	37.5	10.5	31.5	9.5	28.5	ns
t _{dis}	Disable time	OE-to-A or B		625	1875	625	1875	625	1875	ns
+	Innut rise time	A port	Push-pull driving	3.4	10.4	3.0	9.2	2.8	8.4	
٩rA	input rise time	rise time	Open-drain driving	59	177	19.5	58.5	6.5	19.5	115
t _	Input rise time	B port	Push-pull driving	2.9	8.7	2.4	7.2	2.0	6.2	
чв	input rise time	rise time	Open-drain driving	8.3	249	63.5	191	37.5	113	115
t.	Input fall time	A port fall	Push-pull driving	1.5	4.5	1.4	4.2	1.3	4.1	
ЧA		time	Open-drain driving	0.9	2.9	0.8	2.6	0.8	2.4	115
ta	B por		Push-pull driving	2.4	7.2	3.1	9.3	4.2	12.6	ne
чв		time	Open-drain driving	1.1	3.5	1.2	3.6	1.4	4.2	115
t _{sk(O)}	Skew(time), output	Channel-to-Channel Skew		-	0.8	-	0.8	-	0.8	ns
				V _{CCB} =2.5V		ссв=2.5V V _{ссв} =3.3V		V _{CCB} =5V		
	Parameter		Conditions	±0.2V		±0	.2V	±0.2V		Unit
		.		T	YP	T	ſP	T	YP	
Max	ximum data rata	Push-pull	driving	2	21	2	2	2	4	Mbps
		Open-drai	in driving		2		2		2	

www.ait-ic.com

$V_{CCA}=2.5V\pm0.15V$

Parameter		Conditions		V _{ССВ} =2.5V ±0.2V		V _{ССВ} =3.3V ±0.2V		V _{ссв} =5V ±0.2V		Unit	
				MIN	MAX	MIN	MAX	MIN	MAX		
	Propagation delay		Push-pull driving	1.4	4.2	1.7	5.1	2.5	7.5		
t _{PHL}	time high-to-low output	A-to-B	Open-drain driving	13.1	39.5	13.2	39.8	13.3	40	ns	
	Propagation delay		Push-pull driving	1.3	4.1	1.2	3.8	1.2	3.6		
t _{PLH}	time low-to-high output	A-to-B	Open-drain driving	99	297	84.5	254	65.5	197	ns	
	Propagation delay	D to A	Push-pull driving	1.2	3.8	1.2	3.6	1.2	3.8		
I PHL	time nign-to-low output	ime high-to-low B-to-A		13.2	39.6	13.2	39.8	13.3	40	ns	
	Propagation delay t _{PLH} time low-to-high B output		Push-pull driving	1.0	3.2	1.0	3.0	0.9	2.9		
ΓΡLΗ			Open-drain driving	98	294	69	207	31.5	94.5	ns	
t _{en}	Enable time	OE-to-A or B		12	36	10	30	8.5	25.5	ns	
t _{dis}	Disable time	OE-to-A or B		625	1875	625	1875	625	1875	ns	
+	t _{rA} Input rise time	A port	Push-pull driving	1.7	5.1	1.4	4.4	1.3	4.1		
٩		rise time	Open-drain driving	78	234	46	138	6.5	19.5	115	
	Input rise time	B port	Push-pull driving	2.3	7.1	1.7	5.3	1.3	4.1		
t _{rB} Input r		rise time	Open-drain driving	80	240	62	186	40.5	122	ns	
		A port fall	Push-pull driving	2.5	7.7	2.6	7.8	2.5	7.5		
lfA	input iaii time	time	Open-drain driving	10	3.2	1.0	3.0	0.9	2.7	ns	
	Input fall time		B port fall	Push-pull driving	2.5	7.5	3.2	9.6	4.3	13.1	
lfΒ		time	Open-drain driving	1.0	3.0	1.1	3.3	1.4	4.2	ns	
t _{sk(O)}	Skew(time), output	Channel-to-Channel Skew		-	0.8	-	0.8	-	0.8	ns	
Parameter		Conditions		V _{CCB} =2.5V		V _{CCB} =3.3V		V _{CCB} =5V			
				±0.2V		±0.2V		±0.2V		Unit	
					TYP		ТҮР		ТҮР		
Maximum data rata		Push-pull driving		20		22		24		Mbps	
		Open-drain driving		2		2		2			

$V_{CCA}=3.3V\pm0.3V$

Parameter		Conditions		V _{ссв} =3.3V ±0.2V		V _{ссв} =5V ±0.2V		Unit
			MIN	MAX	MIN	MAX		
	Propagation delaytime		Push-pull driving	1.8	5.4	2.5	7.7	
t _{PHL}	high-to-low output	A-to-B	Open-drain driving	13.2	39.6	13.3	40	ns
	Propagation delaytime		Push-pull driving	1.1	3.5	1.0	3.2	
t _{PLH}	low-to-high output	A-to-B	Open-drain driving	77.5	232.5	54.5	163.5	ns
	Propagation delaytime	B-to-A	Push-pull driving	1.5	4.7	1.6	5	ns
τ _{PHL}	high-to-low output		Open-drain driving	13.2	39.8	13.3	40.1	
	t _{PLH} Propagation delaytime low-to-high output		Push-pull driving	0.9	2.9	0.9	2.7	ns
t _{PLH}		B-to-A	Open-drain driving	79	237	43.5	130.5	
t _{en}	Enable time	OE-to-A or B		9.5	28.5	7.5	22.5	ns
t _{dis}	Disable time	OE-to-A or B		625	1875	625	1875	ns
+.	Input rise time		Push-pull driving	1.1	3.5	1.0	3.2	ns
ι _r A	input rise time	A port rise time	Open-drain driving	58.5	175.5	24	72	
+_	Input rise time	B port rise time	Push-pull driving	1.5	4.5	1.2	3.6	- ns
ιrΒ			Open-drain driving	58.5	175.5	37.5	112.5	
+	Input fall time	A port fall time	Push-pull driving	4.0	12	3.8	11.4	ns
ЧA	t _{fA} Input fall time		Open-drain driving	1.1	3.3	1.0	3.2	
t _{rB} Input fall time	Input fall time	B port fall time	Push-pull driving	4.1	12.3	5.4	16.2	ns
	Input fail time		Open-drain driving	1.0	3.2	1.2	3.6	
t _{sk(O)}	Skew(time), output	Channel-to-Channel Skew		-	0.8	-	0.8	ns
Parameter		Conditions		V _{ССВ} =3.3V ±0.2V		V _{CCB} =5V ±0.2V		Unit
				ТҮР		ТҮР		
Maximum data rata		Push-pull driving]	23		24		
		Open-drain driving		2		2		Mbps

$V_{CCA}=5V\pm0.35V$

Parameter		Conditions		V _{ссв} =5V±0.2V		Unit
				Тур	MAX	
	Propagation delaytime high-to-low	A-to-B	Push-pull driving	2.8	8.4	ne
L PHL	output		Open-drain driving	13.4	40.2	ns
	Propagation delaytime low-to-high	A-to-B	Push-pull driving	1.0	3.0	ns
I PLH	output		Open-drain driving	77.5	232.5	
	Propagation delaytime high-to-low output	B-to-A	Push-pull driving	2.9	8.7	
T PHL			Open-drain driving	13.7	41.3	ns
	Propagation delaytime low-to-high output	B-to-A	Push-pull driving	0.9	2.7	
T PLH			Open-drain driving	80	240	ns
t _{en}	Enable time		OE-to-A or B	8.5	25.5	ns
t _{dis}	Disable time		OE-to-A or B	625	1875	ns
	Input rise time	A port rise	Push-pull driving	0.9	2.9	
ι _r A		time	Open-drain driving	52.5	157.5	115
+	lanut rice time	B port rise	Push-pull driving	1.1	3.5	ns
ι _r B	input rise time	time	Open-drain driving	47.5	142.5	
+	Input fall time	A port fall	Push-pull driving	4.5	13.5	
lfA		time	Open-drain driving	1.3	3.9	115
t _{fB}	locut fall time	B port fall	Push-pull driving	4.4	13.4	
		time	Open-drain driving	1.2	3.8	ns
t _{sk(O)}	Skew(time), output	Channel-to-Channel Skew		-	0.8	ns
Parameter		Conditions		V _{ссв} =5V±0.2V		Unit
				Тур		
Maximum data rata				24		Mbps
		Open-drain driving		2		

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Low-Level Output Voltage vs

Fig 2. Low-Level Output Voltage vs

Fig 4. Low-Level Output Voltage vs Low-Level Current

Fig 6. Low-Level Output Voltage vs Low-Level Current

Fig 7. Low-Level Output Voltage vs

Fig 8. Low-Level Output Voltage vs

Fig 12. Low-Level Output Voltage vs Low-Level Current

Fig 13. Low-Level Output Voltage vs

DETAILED INFORMATION

Parameter Measurement Information

www.ait-ic.com

Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- PRR 10MHz
- Z₀ = 50Ω
- dv/dt ≥ 1V/ns

NOTE: All input pulses are measured one at a time, with one transition per measurement.

Fig 16. Data Rate, Pulse Duration, Propagation Delay, Output Rise and Fall Time Measurement Using A Push-Pull Driver Fig 17. Data Rate, Pulse Duration, Propagation Delay, Output Rise and Fall Time Measurement Using An Open-Drain Driver

Figure 18. Load Circuit For Enable/Disable Time Measurement

Table 1. Switch Configuration For Enable/Disable Timing

TEST	S1
t_{PZL} ⁽¹⁾ , t_{PLZ} ⁽²⁾	2 × V _{CCO}
tрнzl ⁽¹⁾ , tрzн ⁽²⁾	Open

(1) t_{PZL} and t_{PZH} are the same as $t_{en.}$

(2) t_{PLZ} and t_{PHZ} are the same as t_{dis}.

AiT Semiconductor Inc. AL0108-Q www.ait-ic.com 8-BIT BIDIRECTIONAL VOLTAGE-SHIFTING, VOLTAGE TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS

(1) All input pulses are measured one at a time, with one transition per measurement.

Fig 19. Voltage Waveforms Pulse Duration

Fig 20. Voltage Waveforms Propagation Delay Times

- A. Waveform 1 is for an output with internal such that the output is high, except when OE is high.
- B. Waveform 2 is for an output with conditions such that the output is low, except when OE is high.

Fig 21. Voltage Waveforms Enable And Disable

www.ait-ic.com

B-BIT BIDIRECTIONAL VOLTAGE-SHIFTING, VOLTAGE TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS

BLOCK DIAGRAM

Overview

The AL0108-Q device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.65V to 5.5V, while the B port can accept I/O voltages from 2.3V to 5.5V. The device is a pass-gate architecture with edge-rate accelerators (one-shots) to improve the overall data rate. $10-k\Omega$ pullup resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs.

The AL0108-Q architecture (see Fig 22) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A. These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

Fig 22. Architecture of a AL0108-Q Cell

The AL0108-Q employs two key circuits to enable this voltage translation:

- (1) An N-channel pass-gate transistor topology that ties the A-port to the B-port
- (2) Output one-shot (O.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B Ports.

Input Driver Requirements

The continuous dc-current "sinking" capability is determined by the external system-level open-drain (or push -pull) drivers that are interfaced to the AL0108-Q I/O pins. Since the high bandwidth of these bidirectional I/O circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a modest dc-current "sourcing" capability of hundreds of micro-Amps, as determined by the internal 10-k Ω pullup resistors.

The fall time (t_{fA} , t_{fB}) of a signal depends on the edge-rate and output impedance of the external device driving AL0108-Q data I/Os, as well as the capacitive loading on the data lines.

Similarly, the tPHL and max data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , tPHL, and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 Ω .

Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round-trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic ICC, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the AL0108-Q device output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system-level affects.

Enable and Disable

The AL0108-Q device has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. The disable time (tdis) indicates the delay between the time when OE goes low and when theoutputs are disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pullup or Pulldown Resistors on I/O Lines

Each A-port I/O has an internal 10-k Ω pullup resistor to V_{CCA}, and each B-port I/O has an internal 10-k Ω pullup resistor to V_{CCB}. If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal 10-k Ω resistors). Adding lower value pull-up resistors will affect V_{OL} levels, however. The internal pull-ups of the AL0108-Q are disabled when the OE pin is low.

APPLICATION INFORMATION

The AL0108-Q device can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I₂C or 1-wire, where the data is bidirectional and no control signal is available. The device can also be used in applications where a push-pull driver is connected to the data I/Os, but the AL0108-Q might be a better option for such push-pull applications.

Typical Application

Fig 23. Typical Application Circuit

AiT Semiconductor Inc.

AL0108-Q

8-BIT BIDIRECTIONAL VOLTAGE-SHIFTING, VOLTAGE TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS

PACKAGE INFORMATION

www.ait-ic.com

	Millimeters				
Symbol	Min	Мах			
A	-	1.200			
A1	0.050	0.150			
A2	0.800	1.050			
b	0.200	0.280			
с	0.130	0.170			
D	6.400	6.600			
E	4.300	4.500			
E1	6.200	6.600			
e	0.650 BSC				
L	0.450	0.750			
Н	0.250 Тур				
θ	0°	8°			

IMPORTANT NOTICE

www.ait-ic.com

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.