

AiT Semiconductor Inc.

DESCRIPTION

The AO2122 is a Dual CMOS operational amplifier use auto-zero techniques to simultaneously provide very low offset voltage ($5\mu V$ Max) and near-zero drift over time and temperature.

www.ait-ic.com

This AO2212 of amplifier has ultralow noise, offset and power.

This AO2212 has high-precision operational amplifier offset high input impedance and rail-to-rail input and rail-to-rail output swing. With high gainbandwidth product of 350KHz and slew rate of $0.17V/\mu s$.

Single or dual supplies as low as +2.3V (\pm 1.15V) and up to +5.5V (\pm 2.75V) may be used.

The AO2122 is available in SOP8 and MSOP8, DFN8 (2x2) package.

ORDERING INFORMATION

Package Type	Part Number		
SOP8	M0	AO2122M8R	
SPQ: 4,000pcs/Reel	M8	AO2122M8VR	
MSOP8	MS8	AO2122MS8R	
SPQ: 4,000pcs/Reel	10120	AO2122MS8VR	
DFN8		AO2122J8R	
(2x2) SPQ: 3,000pcs/Reel	J8	AO2122J8VR	
Note	V: Halogen free Package R: Tape & Reel		
AiT provides all RoHS products			

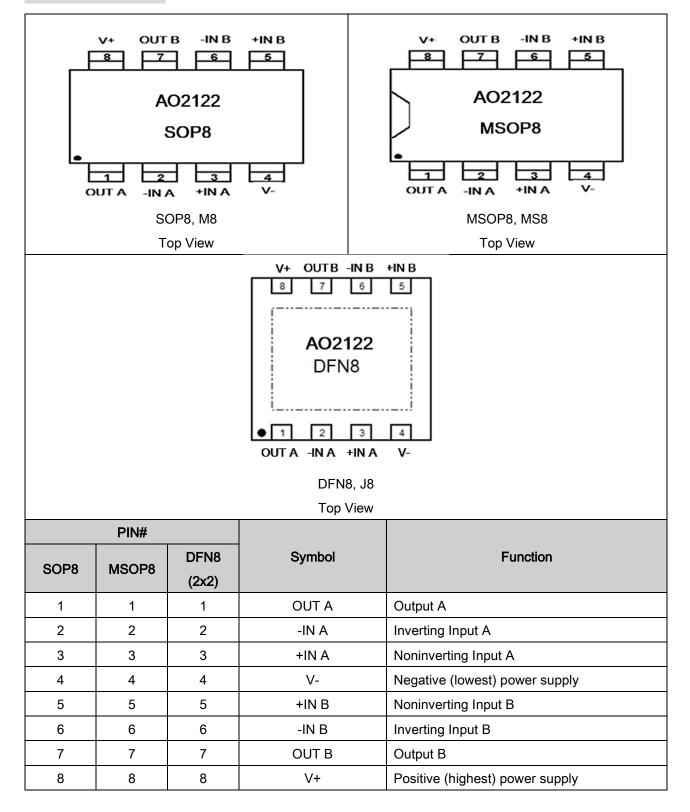
FEATURES

- Low Offset Voltage: 1uV(TYP.)
- Input Offset Drift: ±0.005µV/°C
- High Gain Bandwidth Product: 350KHz
- Rail-to-Rail Input and Output
- High Gain, CMRR, PSRR:130dB
- High Slew Rate: 0.17V/µs
- Low Noise: 3.2uVp-p (0.01~10Hz)
- Low Power Consumption: 60µA /op amp
- Overload Recovery Time:6us
- Low Supply Voltage: 2.3 V to 5.5 V
- No External Capacitors Required
- Extended Temperature: -40°C ~ +125°C

APPLICATION

- Temperature Sensors
- Medical/Industrial Instrumentation
- Pressure Sensors
- Battery-Powered Instrumentation
- Active Filtering
- Weight Scale Sensor
- Strain Gage Amplifiers
- Power Converter/Inverter

TYPICAL APPLICATION



www.ait-ic.com

ZERO-DRIFT, RAIL-TO-RAIL DUAL I/O CMOS OP AMPLIFIER

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _S , Supply, V _S =(V+) - (V-), Voltage		7.0V
Signal Input Pin, Voltage ⁽¹⁾		(V-)-0.5 to (V+)0.5V
Signal Output Pin, Voltage ⁽²⁾		(V-)-0.5 to (V+)0.5V
Signal Input Pin, Current ⁽¹⁾		±10mA
Signal Output Pin, Current ⁽²⁾		±55mA
Output Short-Circuit, Current ⁽³⁾		Continuous
	SOP8	110°C/W
θ_{JA} , Package Thermal Impedance ⁽⁴⁾	MSOP8	170°C/W
	DFN8(2x2)	80°C/W
T _A , Operating Range		-40°C ~ +125°C
T _{STG} , Storage Temperature		-65°C ~ +150°C
T _J , Junction Temperature ⁽⁵⁾		-40°C ~ +150°C
ESD Ratings		
	Human-Body Model (HBM)	±5000V
V _(ESD) , Electrostatic Discharge	Machine Model (MM)	±400V

*Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(1) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

(2) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±55mA or less.

(3) Short-circuit to ground, one amplifier per package.

(4) The package thermal impedance is calculated in accordance with JESD-51.

(5) The maximum power dissipation is a function of $T_{J (MAX)}$, R_{BJA} , and T_A . The maximum allowable power dissipation at any ambient temperature is PD = ($T_{J (MAX)} - T_A$) / R_{BJA} . All numbers apply for packages soldered directly onto a PCB.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Supply Voltage	Vs =(V+) - (V-)	Single-Supply	2.3	-	5.5	V
		Dual-Supply	±1.15		±2.75	

ZERO-DRIFT, RAIL-TO-RAIL DUAL I/O CMOS OP AMPLIFIER

ELECTRICAL CHARACTERISTICS

www.ait-ic.com

At $T_A = +25^{\circ}$ C, Vs=5V, R_L = 10k Ω connected to Vs/2, and V_{OUT} = Vs/2, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
OFFSET VOLTAGE	•					
Input Offset Voltage	Vos	$V_{CM} = V_S / 2$	-5	±1	5	μV
Input Offset Voltage Average Drift	Vos Tc			±0.005	±0.05	μV/°C
Power-Supply Rejection Ratio	PSRR	Vs=2.3V to 5.5V, V _{CM} = 0	110	130	-	dB
Channel Separation	dc		-	0.1	-	μV/V
INPUT BIAS CURRENT						
Input Bias Current ⁽¹⁾⁽²⁾	Ι _Β	$V_{CM} = V_S/2$	-	±10	-	pА
Input Offset Current ⁽¹⁾	los		-	±10	-	pА
NOISE PERFORMANCE						
Innut Valtage Naise		f=0.01Hz to 10Hz	-	3.2	-	μVpp
Input Voltage Noise	enp-p	f=0.01Hz to 1Hz	-	0.97	-	μVpp
Input Voltage Noise Density	en	f=1KHz	-	140	-	nV/√Hz
Input Current Noise Density	İn	f=10Hz	-	15	-	fA/√Hz
INPUT VOLTAGE RANGE						
Common-Mode Voltage Range	Vcm		-0.1	-	0.1	V
Common-Mode Rejection Ratio	CMRR	$(V-)-0.1V < V_{CM} < (V+) + 0.1V$	110	130	-	dB
INPUT CAPACITANCE						
Differential			-	1	-	pF
Common-Mode			-	5	-	рF
OPEN-LOOP GAIN						
Open-Loop Voltage Gain	Aol	R _L =10KΩ, V ₀ =0.3V ~ 4.7V, T _A = -40°C ~ +125°C	110	130	-	dB
DYNAMIC PERFORMANCE		1				
Slew Rate ⁽⁵⁾	SR	G=+1	-	0.17	-	V/µs
Gain-Bandwidth Product	GBW		-	350	-	KHz
Overload Recovery Time	tor		-	6	-	us
OUTPUT CHARACTERISTICS					•	
Output Voltage High	V _{он}	R∟=100 KΩ to GND	4.99	4.998	-	V
		$R_L=10K\Omega$ to GND	4.95	4.98	-	V
Output Voltage Low	V _{OL}	RL=100 KΩ to V+	-	1	10	mV
		RL=10 KΩ to V+	-	10	30	mV
Short-Circuit Current ⁽³⁾⁽⁴⁾	I _{SC}		-	25	-	mA
POWER SUPPLY						
Operating Voltage Range	Vs		2.3	-	5.5	V
Quiescent Current/Amplifier	IQ		-	60	87	μA

(1) This parameter is ensured by design and/or characterization and is not tested in production.

(2) Positive current corresponds to current flowing into the device.

(3) The maximum power dissipation is a function of $T_{J (MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is PD = ($T_{J (MAX)} - T_A$) / $R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

(4) Short circuit test is a momentary test.

(5) Number specified is the slower of positive and negative slew rates.

TYPICAL PERFORMANCE CHARACTERISTICS

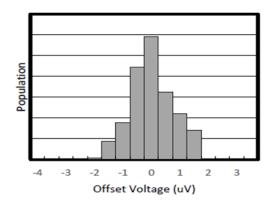


Fig 1. Offset Voltage Production Distribution

Fig 3. Open-Loop Gain and Phase vs. Frequency

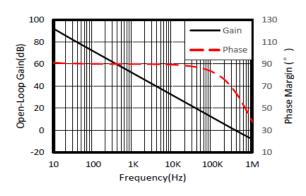


Fig 5. Power-Supply Rejection Ratio vs. Frequency

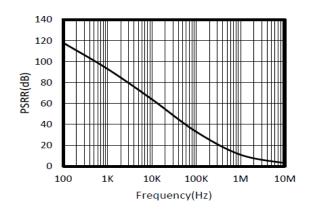


Fig 2. Offset Voltage Production Distribution

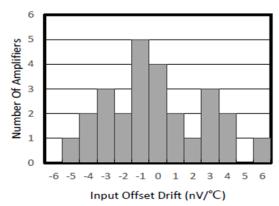


Fig 4. Input Bias Current vs. Temperature

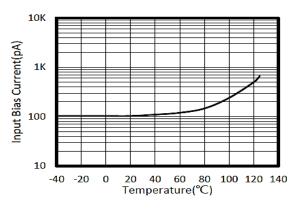
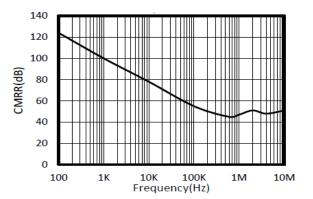
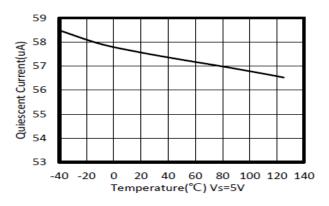




Fig 6. Common-Mode Rejection Ratio vs. Frequency

www.ait-ic.com

Fig 7. Quiescent Current vs. Temperature

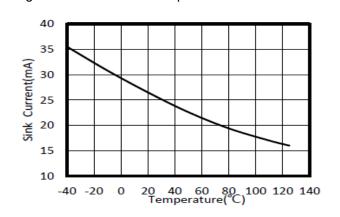


Fig 11. Small-Signal Step Response

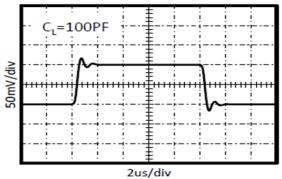
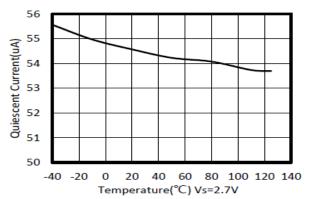




Fig 8. Quiescent Current vs. Temperature

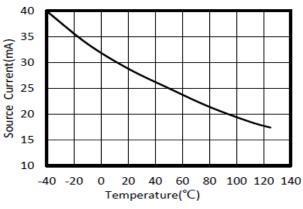
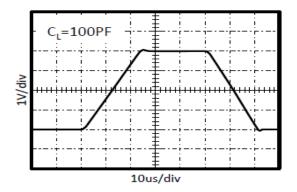
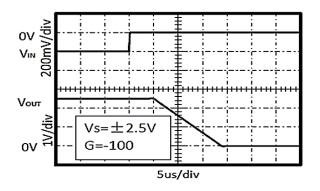




Fig 12. Large-Signal Step Response



www.ait-ic.com

Fig 13. Positive Overvoltage Recovery

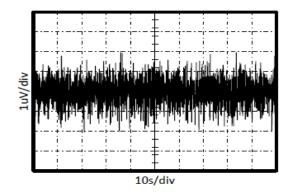


Fig 17. 0.01Hz to 1Hz Noise at Vs=5V

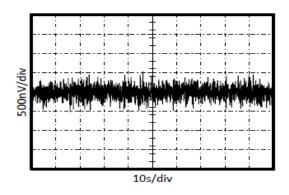
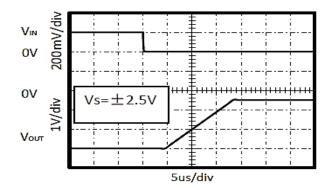
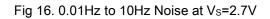




Fig 14. Negative Overvoltage Recovery

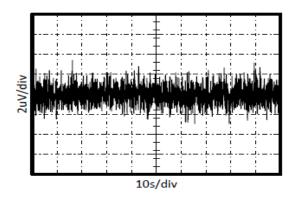
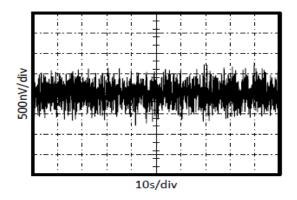
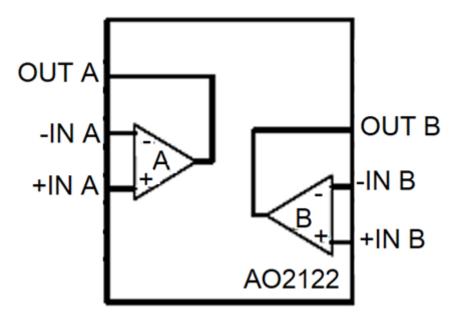




Fig 18. 0.01Hz to 1Hz Noise at $V_{\rm S}\mbox{=}2.7V$

BLOCK DIAGRAM

DETAILED INFORMATION

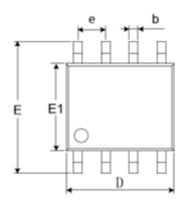
Application Notes

The AO2122 is unity-gain stable and free from unexpected output phase reversal op amp. It use autozeroing techniques to provide low offset voltage and very low drift over time and temperature. Good layout practice mandates use of a 0.1μ F capacitor practice mandates use of a 0.1μ F capacitor placed closely across the supply pins.

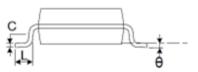
For lowest offset voltage and precision performance, circuit layout and mechanical conditions should be optimized. Avoid temperature gradients that create thermoelectric (See beck) effects in thermocouple junctions formed form connecting dissimilar conductor. These thermally-generated potentials can be made to cancel by assuring that they are equal on both input terminals.

- Use Low Thermoelectric-Coefficient Connections (avoid dissimilar metals).
- Thermally Isolate Components Form Power Supplies or other Heat-Sources
- Shield Op Amp and input Circuitry form Air Currents, such as cooling fans.

Following these guidelines will reduce the likelihood of junctions being at different temperatures, which can cause thermoelectric voltages of $0.1 \mu V/^{\circ}C$ or higher, depending on materials used.

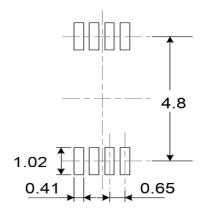

Operating Voltage

The AO2122 operates over a power-supply range of 2.3V to $\pm 5.5V$ ($\pm 1.15V$ to $\pm 2.75V$). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier.



PACKAGE INFORMATION

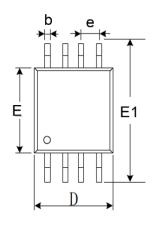
Dimension in SOP8 (Unit: mm)

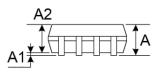


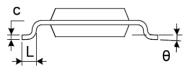
TOP VIEW

BOTTOM VIEW

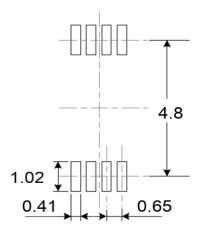
SIDE VIEW


Recommended Land Pattern




Symphol	Millim	ieters	
Symbol	Min	Max	
A	0.820	1.100	
A1	0.020	0.150	
A2	0.750	0.950	
b	0.250	0.380	
С	0.090	0.230	
D	2.900	3.100	
е	0.650 BSC		
E	2.900	3.100	
E1	4.750	5.050	
L	0.400	0.800	
θ	0° 6°		

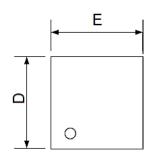
Dimension in MSOP8 (Unit: mm)

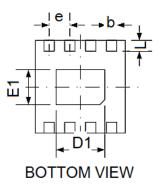


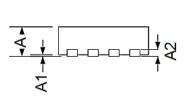
TOP VIEW

BOTTOM VIEW

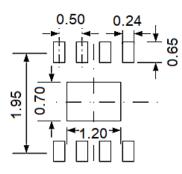
SIDE VIEW


Recommended Land Pattern


Symbol	Millim	neters	
Symbol	Min	Max	
А	0.820	1.100	
A1	0.020	0.150	
A2	0.750	0.950	
b	0.250	0.380	
С	0.090	0.230	
D	2.900	3.100	
е	0.650 BSC		
E	2.900	3.100	
E1	4.750	5.050	
L	0.400	0.800	
θ	0° 6°		



Dimension in DFN8 (2x2) (Unit: mm)


TOP VIEW

SIDE VIEW

Recommended Land Pattern

Symphol	Millim	ieters		
Symbol	Min	Max		
A	0.700	0.800		
A1	0.000	0.050		
A2	0.203 TYP.			
b	0.180	0.300		
D	1.900	2.100		
D1	1.100	1.300		
E	1.900	2.100		
E1	0.600	0.800		
е	0.500 TYP.			
L	0.250 0.450			

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.