

AiT Semiconductor Inc.

DESCRIPTION

The AD8424 is a matched dual power MOSFET driver designed for high-speed switching applications. Its advanced circuit architecture enables it to deliver peak currents up to 4A into capacitive loads as large as 1800pF, making it ideal for fast and efficient power switching.

www.ait-ic.com

A key feature of the AD8424 is its matched rise and fall delay times, which preserve input-to-output pulse widths. This helps minimize timing errors and clock skew, ensuring accurate signal integrity in high-speed digital systems.

The device incorporates non-overlapping drive techniques to reduce dynamic switching losses. It also offers high immunity to latch-up within its specified power and voltage ratings and can tolerate ground pin noise spikes of up to 5V without damage.

The inputs are compatible with TTL and CMOS logic levels across a wide input voltage range of 1.6V to 25V. Integrated 300mV hysteresis enhances noise immunity and allows reliable operation even with slow input signal transitions.

The AD8424 is available in SOP8 package, providing design flexibility across a variety of

ORDERING INFORMATION

applications.

Package Type	Part Number		
SOP8	M8		
SPQ: 4,000pcs/Reel	IVIO	AD8424M8VR	
Nete	V: Halogen free Package		
Note	R: Tape & Reel;U: Tape & Tube		
AiT provides all RoHS products			

FEATURES

- High Peak Output Current: 4A
- Wide Supply Voltage Range: 4.5V to 25V
- High Capacitive Load Drive Capability: 1800pF in 12ns (typical)
- Short Propagation Delay: 36ns (typical)
- Matched Rise and Fall Times
- Low Output Impedance: 1.6Ω (typical)
- Low Quiescent Supply Current
- Over-Temperature Protection
- Under-Voltage Lockout (UVLO)
- Non-Overlapped Drive Technique
- Input Tolerance: Withstands negative transients up to 5V

APPLICATION

- Switch Mode Power Supplies
- Power MOSFET Drivers
- Pulse Transformer Drivers
- Line Drivers
- CCD Driver
- Class D Switching Amplifier

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise specified.

Vs, DC Supply Voltage		26V
Package Thermal Resistance	SOP8	155°C/W
Operating Junction Temperature		-40°C~+125°C
Storage Temperature		-55°C ~ +150°C
Maximum Input Voltage		GND-5V ~ V _{DD} +0.3V

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED WORKING RANGE

DC Supply Voltage	4.5~25V
INA, INB, Input Voltage	5V
Max Output Current	4A

ELECTRICAL CHARACTERISTICS

T_A = 25°C, V_{DD}=18V, unless otherwise specified

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
INPUT	•					
Input Signal High Threshold	VIH	TJ=25℃, Io=1mA	1.60	-	-	V
Input Signal Low Threshold	VIL	12≤V _{IN} ≤25V	-	-	0.70	V
Input Signal Hysteresis	V _{HYS}	1≤l₀=20mA	-	0.30	-	V
Input Current	I _{IN}	0V ≦ VIN ≦ VDD	-	-	±1	μA
OUTPUT				•		
High Output Voltage Von	V _{он}	DC Test	V _{DD} - 0.025	-	-	V
Low Output Voltage	Vol	DC Test	-	-	0.025	V
Pull-Up Resistance	Rон	Source Current=10mA	-	1.60	-	Ω
Pull-Down Resistance	Rol	Sink Current= -10mA	-	1.50	-	Ω
Peak Output Current	Ірк	10V ≦ V _{DD} ≦18V	-	4.00	-	А
POWER SUPPLY						
Deverage Community Community	lcc	VINA=VINB=3V	-	0.90	-	mA
Power Supply Current		VINA=VINB=0V	-	0.50	-	
Operating Voltage Range	VDD	-	4.50	-	25	V
Under-Voltage Lockout ON Threshold	-	-	-	3.70	4.10	V
Under-Voltage Lockout Hysteresis	-	-	-	0.50	-	V
SWITCHING CHARACTERISTICS	1	11		1		
Rise Time	tR	C∟=1800pF, See Figure 1	-	12	-	
Fall Time	t⊧	C∟=1800pF, See Figure 1	-	12	-	
	t _{D1}	Non-Inverting Input	-	36	-	ns
Turn-On Delay Time		Inverting Input	-	35	-	
Turn-On Delay Time	tee	Non-Inverting Input	-	36	-	
	t _{D2}	Inverting Input	-	35	-	
OVER-TEMPERATURE PROTECTION	1				· •	
Thermal Shutdown Threshold	-	-	-	150	-	°C
Thermal Shutdown Threshold Hysteresis	-	-	-	25	-	°C

BLOCK DIAGRAM

DETAILED INFORMATION

FUNCTION TABLE

INA	INB	OUTA	OUTB
L	L	L	L
L	Н	L	Н
Н	L	Н	L
Н	Н	Н	Н

Inputs A and B

MOSFET driver inputs A and B are high-impedance, TTL/CMOS compatible inputs. These inputs also have 300mV of hysteresis between the high and low thresholds that prevents output glitching even when the rise and fall time of the input signal is very slow.

Ground (GND)

Ground is the device return pin. The Ground pin(s) should have a low-impedance connection to the bias supply source return. When the capacitive load is discharged, high peak current flows out of the Ground pin(s).

Output A and B

MOSFET driver outputs A and B are low-impedance, CMOS push-pull style outputs. The pull-down and pullup devices are of equal strength, making the rise and fall times equivalent. Output A/B is held LOW if the input is unbiased or floating.

Supply Input (VDD)

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 25V concerning the Ground pin. The V_{DD} input should be bypassed with local ceramic capacitors. The value of these capacitors should be chosen based on the capacitive load that is being driven. A value of 1.0µF is suggested.

Exposed Metal Pad

The exposed metal pad of the DFN-S package is electrically isolated (not internally connected to any potential). It may be connected to a ground plane or any other copper plane on the PCB to enhance thermal dissipation and improve overall heat removal from the package.

APPLICATION INFORMATION

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Min.	Max.	
A	1.350	1.750	
A1	0.100	0.250	
A2	1.350	1.550	
В	0.330	0.510	
С	0.190	0.250	
D	4.780	5.000	
E	3.800	4.000	
E1	5.800	6.300	
е	1.270 TYP.		
L	0.400	1.270	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.