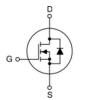
DESCRIPTION

The AM80R760 is available in TO-252 package.

BVDSS	RDSON	ID
850V	0.58Ω	10A


FEATURE

- Fast Switching
- 100% avalanche tested
- Improved dv/dt capability

APPLICATION

High frequency switching mode power supply

High francisco quitables made nouse comb.

PIN DESCRIPTION

TO-252

ORD	ERIN	IG IN	NFO	RMA	HON

Package Type	Part Number		
TO-252		AM90D760D\/D	
SPQ: 2,500pcs/Reel	D	AM80R760DVR	
Niete	R: Tape & Reel		
Note	V: Halogen free Package		
AiT provides all RoHS products			

Pin#	Symbol	Function
1	G	Gate
2,4	D	Drain
3	S	Source

ABSOLUTE MAXIMUM RATINGS

T_C = 25°C, unless otherwise specified.

16 20 0, unicos otriciwise opcomed.			
V _{DSS} , Drain-to-Source Voltage		800V	
I _D , Continuous Drain Current		10A	
I _D , Continuous Drain Current T _C = 1	00 °C	8A	
IDM, Pulsed Drain Current (1)		30A	
V _{GS} , Gate-to-Source Voltage		±30V	
E _{AS} , Single Pulse Avalanche Energy (2)		82mJ	
dv/dt, Peak Diode Recovery dv/dt (3)		15V/ns	
P _D , Power Dissipation	o, Power Dissipation TO-252		
P _D , Derating Factor above 25°C		0.416W/°C	
T _J , Operating Junction Temperature Range		150°C	
T _{STG} , Storage Temperature Range		-55°C~+150°C	
T _L , Maximum Temperature for Soldering		300°C	
R _{0JA} , Junction-to-Ambient	TO 050	62.5°C/W	
R _{eJC} , Junction-to-Case	TO-252	2.4°C/W	

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) Pulse width limited by maximum junction temperature
- (2) L=20mH, V_{Ds}=50V, Start T_J=25°C
- (3) $I_{SD} = 5A, di/dt \le 100A/us, V_{DD} \le B_{VDS}, Start T_J = 25^{\circ}C$

REV1.0 - MAY 2025 RELEASED - - 1

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
OFF Characteristics						
Drain to Source Breakdown Voltage	V _{DSS}	V _{GS} =0V, I _D =250μA	800	-	-	V
BV _{DSS} Temperature Coefficient	ΔBV _{DSS} / ΔT _J	I _D =250μA Reference 25°C	-	0.7	-	V/°C
Drain to Source Leakage Current	I _{DSS}	V _{DS} =800V, V _{GS} =0V, T _J =25°C V _{DS} =640V, V _{GS} =0V,	-	-	1 100	μΑ
Gate to Source Forward Leakage	I _{GSS(F)}	T _J =125°C V _{GS} =+30V	-	-	100	nA
Gate to Source Reverse Leakage	I _{GSS(R)}	V _{GS} =-30V	-	-	-100	nA
ON Characteristics						
Drain-to-Source On-Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =5A *	-	0.58	0.76	Ω
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D =250µA*	2.5	-	3.5	V
Dynamic Characteristics						
Gate Resistance	Rg	f=1.0MHz	-	6.8	-	Ω
Input Capacitance	C _{iss}	- \/=0\/ \/=2 5 \/	-	750	-	
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz	-	331	-	pF
Reverse Transfer Capacitance	Crss	1- 1.01VII 12	-	12	-	
Switching Characteristics						
Turn-on Delay Time	t _{d (ON)}		-	85	-	
Rise Time	t _r	I _D =5A, V _{DD} =350V,	-	59.8	-	
Turn-Off Delay Time	t _{d (OFF)}	V_{GS} =10V, R_{G} =50 Ω	-	66.6	-	ns
Fall Time	t _f		-	200.4	-	
Total Gate Charge	Q_g	1 54 1/ 0401/	-	19.8	-	
Gate to Source Charge	Qgs	I _D =5A, V _{DD} =640V,	-	5.4	-	nC
Gate to Drain ("Miller") Charge	Q_{gd}	V _{GS} =10V	-	4.8	-	
Source-Drain Diode Characteris	stics					
Continuous Source Current (Body Diode)	Is	T -25°C	-	-	10	Α
Maximum Pulsed Current (Body Diode)	Іѕм	- T₀=25°C	-	_	30	Α
Diode Forward Voltage	V _{SD}	I _S =5A , V _{GS} =0V *	-	-	1.2	V
Reverse Recovery Time	Trr	- Io-5A Ti-25°C	-	339	-	ns
Reverse Recovery Charge	Qrr	ls=5A, Tj=25°C dlF/dt =100A/µs	-	2.71	-	nC
Reverse Recovery Current	I _{rrm}	uir/ut - τουΑγμδ	-	13.6	-	Α

^{*} Pulse width tp≤300μs, δ≤2%

- 2 -REV1.0 - MAY 2025 RELEASED -

TYPICAL PERFORMANCE CHARACTERISTICS

Fig1. Typical Output Characteristics

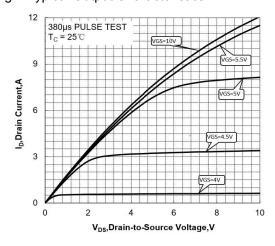


Fig3. Typical Drain to Source ON Resistance vs. Drain Current

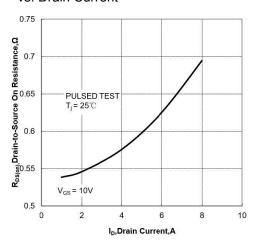


Fig5. Typical Threshold Voltage vs. Junction Temperature

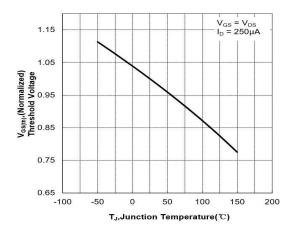


Fig2. Typical Transfer Characteristics

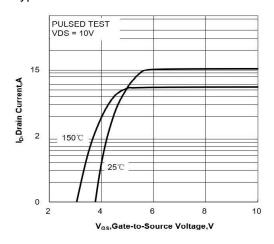


Fig4. Typical Drain to Source on Resistance vs. Junction Temperature

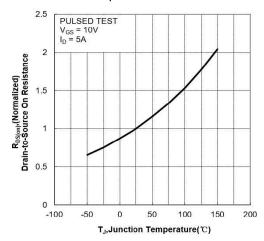
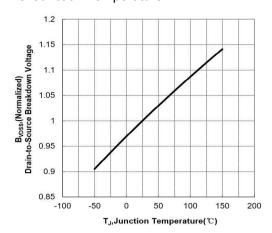
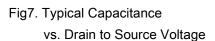




Fig6. Typical Breakdown Voltage vs. Junction Temperature

REV1.0 - MAY 2025 RELEASED - - 3 -

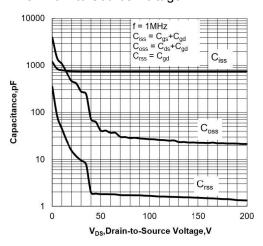


Fig9. Gate Charge Test Circuit

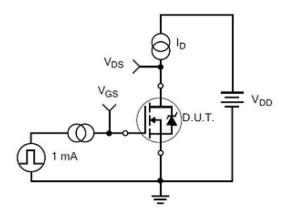


Fig11. Resistive Switching Test Circuit

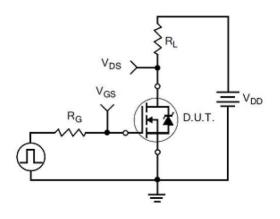


Fig8. Typical Gate Charge vs. Gate to Source Voltage

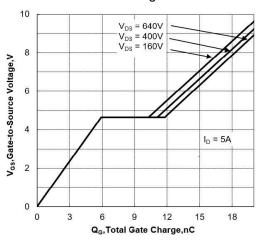


Fig10. Gate Charge Waveforms

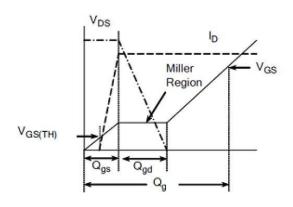
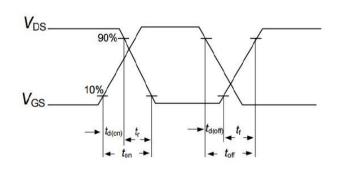



Fig12. Resistive Switching Waveforms

REV1.0 - MAY 2025 RELEASED -- 4 -

Fig13. Diode Reverse Recovery Test Circuit

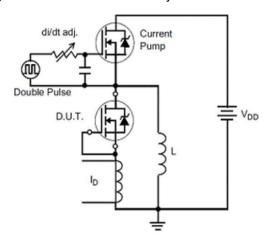


Fig14. Diode Reverse Recovery Waveform

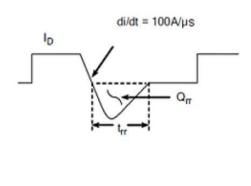
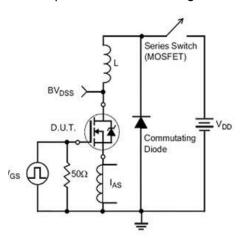
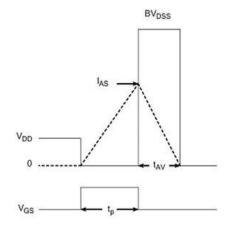
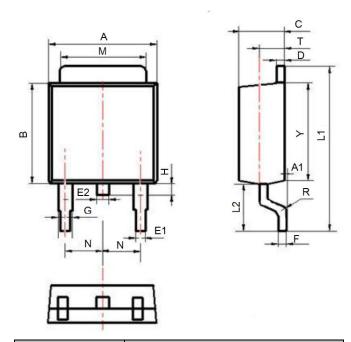


Fig15. Unclamped Inductive Switching Test Circuit


Fig16. Unclamped Inductive Switching Waveform

REV1.0 - MAY 2025 RELEASED - - 5 -

PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)

Symbol	MILLIMETERS		
Symbol	Min.	Max.	
Α	6.300	6.900	
A1	0	0.130	
В	5.700	6.300	
С	2.100	2.500	
D	0.300	0.600	
E1	0.600	0.900	
E2	0.700	1.000	
F	0.300	0.600	
G	0.700	1.200	
L1	9.600	10.500	
L2	2.700	3.100	
Н	0.600	1.000	
M	5.100	5.500	
N	2.090	2.490	
R	0.300		
Т	1.400 1.600		
Υ	5.100	6.300	

REV1.0 - MAY 2025 RELEASED - - 6 -

AM80R760

MOSFET
850V, 10A SUPER JUNCTION MOSFET

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - MAY 2025 RELEASED - - 7 -