

DESCRIPTION

The AL6G04 is a 6-channel inverter designed to operate over a wide supply voltage range from 1.65 V to 5.5 V. Each inverter implements the Boolean function $Y = \bar{A}$.

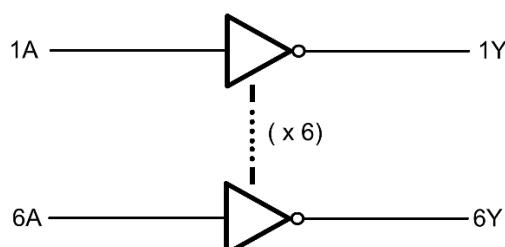
The AL6G04 features high output drive capability while maintaining low static power dissipation across the entire VCC operating range.

The AL6G04 is specified for operation over an ambient temperature range of -40°C to $+125^{\circ}\text{C}$.

The AL6G04 is available in SOP14 and TSSOP14 packages.

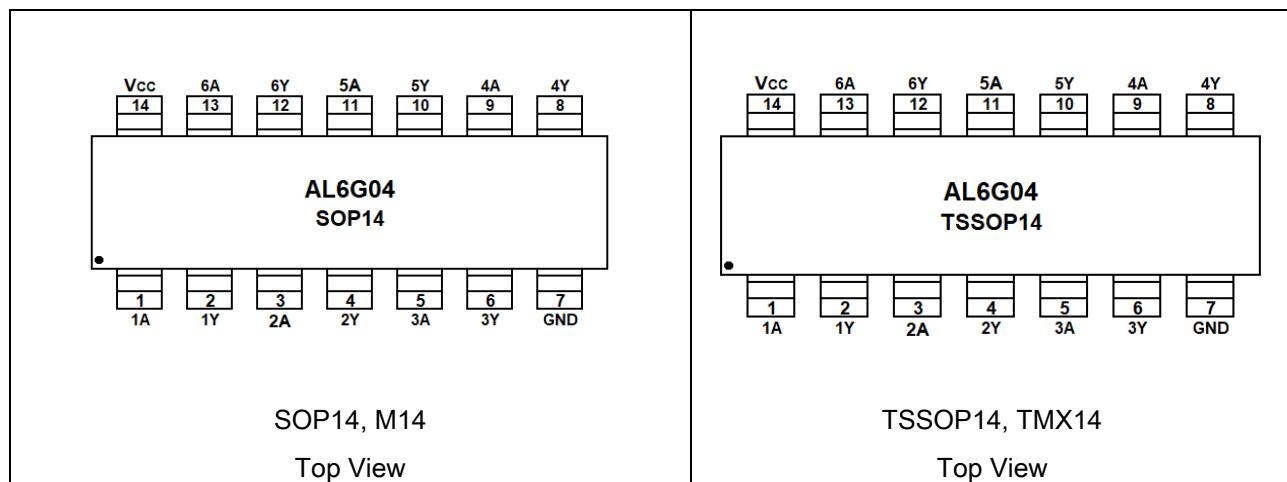
FEATURES

- Operating Voltage Range: 1.65V to 5.5V
- Low Power Consumption: 1 μA (Max)
- Operating Temperature Range: -40°C to $+125^{\circ}\text{C}$
- Input Accept Voltage to 5.5V
- High Output Drive: $\pm 24\text{mA}$ at $V_{CC}=3.0\text{V}$
- I_{off} Supports Partial-Power-Down Mode Operation
- Available in SOP14 and TSSOP14 Packages


APPLICATION

- AC Receiver
- Blu-ray Players and Home Theaters
- Desktops or Notebook PCs
- Digital Video Cameras (DVC)
- Mobile Phones
- Personal Navigation Device (GPS)
- Portable Media Player

ORDERING INFORMATION


Package Type	Part Number	
SOP14 SPQ: 4,000pcs/Reel	M14	AL6G04M14R
		AL6G04M14VR
TSSOP14 SPQ: 4,000pcs/Reel	TMX14	AL6G04TMX14R
		AL6G04TMX14VR
Note	V: Halogen free Package R: Tape & Reel	
AiT provides all RoHS products		

SIMPLIFIED SCHEMATIC

PIN DESCRIPTION

PIN#		Symbol	I/O	Function
SOP14	TSSOP14			
1	1	1A	I	Input 1
2	2	1Y	O	Output 1
3	3	2A	I	Input 2
4	4	2Y	O	Output 2
5	5	3A	I	Input 3
6	6	3Y	O	Output 3
7	7	GND	P	Ground
8	8	4Y	O	Output 4
9	9	4A	I	Input 4
10	10	5Y	O	Output 5
11	11	5A	I	Input 5
12	12	6Y	O	Output 6
13	13	6A	I	Input 6
14	14	V _{CC}	P	Power Pin

FUNCTION TABLE

INPUTS	OUTPUT
A	Y
H	L
L	H

Y=Ā. H=High Voltage Level L=Low Voltage Level

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾ ⁽²⁾

V _{CC} , Supply Voltage Range	-0.5V ~ + 6.5V	
V _I , Input Voltage Range ⁽²⁾	-0.5V ~ + 6.5V	
V _O , Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾	-0.5V ~ + 6.5V	
V _O , Voltage range applied to any output in the high or low state ⁽²⁾ ⁽³⁾	-0.5 ~ V _{CC} +0.5V	
I _{IK} , Input Clamp Current	V _I <0	
I _{OK} , Output Clamp Current	V _O <0	
I _O , Continuous Output Current	±50mA	
I _O , Continuous Current through V _{CC} or GND	±100mA	
θ _{JA} , Package Thermal Impedance ⁽³⁾	SOP14	105°C/W
	TSSOP14	90°C/W
T _J , Junction Temperature ⁽⁴⁾	-65°C ~ +150°C	
T _{STG} , Storage Temperature	-65°C ~ +150°C	

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (2) The value of V_{CC} is provided in the Recommended Operating Conditions table.
- (3) The package thermal impedance is calculated in accordance with JESD-51.
- (4) The maximum power dissipation is a function of T_J(MAX), R_{θJA}, and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_J(MAX) - T_A) / R_{θJA}. All numbers apply for packages soldered directly onto a PCB.

ESD RATINGS

Parameter	Symbol	Min	Unit
Human-Body Model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	V _(ESD)	±4000	V
Charged-Device Model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾		±1500	
Machine Model (MM)		±400	

(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

RECOMMENDED OPERATING CONDITIONS

TA=25°C, unless otherwise noted.*

Parameter	Symbol	Conditions	Min	Typ.	Max	Unit
Supply Voltage	V _{CC}	Operating	1.65	-	5.5	V
		Data Retention only	1.50	-	-	
High-Level Input Voltage	V _{IH}	V _{CC} = 1.65 V ~1.95 V	0.65x V _{CC}	-	-	V
		V _{CC} = 2.3V ~2.7 V	1.70	-	-	
		V _{CC} = 3 V ~3.6 V	2	-	-	
		V _{CC} = 4.5 V ~5.5 V	0.70x V _{CC}	-	-	
Low-Level Input Voltage	V _{IL}	V _{CC} = 1.65 V ~1.95 V	-	-	0.35x V _{CC}	V
		V _{CC} = 2.3V ~2.7 V	-	-	0.70	
		V _{CC} = 3 V ~3.6 V	-	-	0.80	
		V _{CC} = 4.5 V ~5.5 V	-	-	0.30x V _{CC}	
Input Voltage	V _I	-	0	-	5.50	V
Output Voltage	V _O	-	0	-	5.50	V
Input Transition Rise or Fall	Δt/Δv	V _{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V	-	-	20	ns/V
		V _{CC} = 3.30 V ± 0.3 V	-	-	10	
		V _{CC} = 5 V ± 0.5V	-	-	5	
Operating Temperature	T _A	-	-40	-	+125	°C

* All unused inputs of the device must be held at VCC or GND to ensure proper device operation.

AC CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Typ.	Max	Unit	
Propagation Delay	t _{pd}	V _{CC} =1.8V±0.15V	C _L =30pF, R _L =1KΩ	-	13	-	ns
		V _{CC} =2.5V±0.2V	C _L =30pF, R _L =500Ω	-	5.1	-	
		V _{CC} =3.3V±0.3V	C _L =50pF, R _L =500Ω	-	4.2	-	
		V _{CC} =5V±0.5V	C _L =50pF, R _L =500Ω	-	3.3	-	
Power Dissipation Capacitance	C _{pd}	V _{CC} =1.8V	f=10MHz	-	16	-	pF
		V _{CC} =2.5V		-	18	-	
		V _{CC} =3.3V		-	18	-	
		V _{CC} =5V		-	20	-	

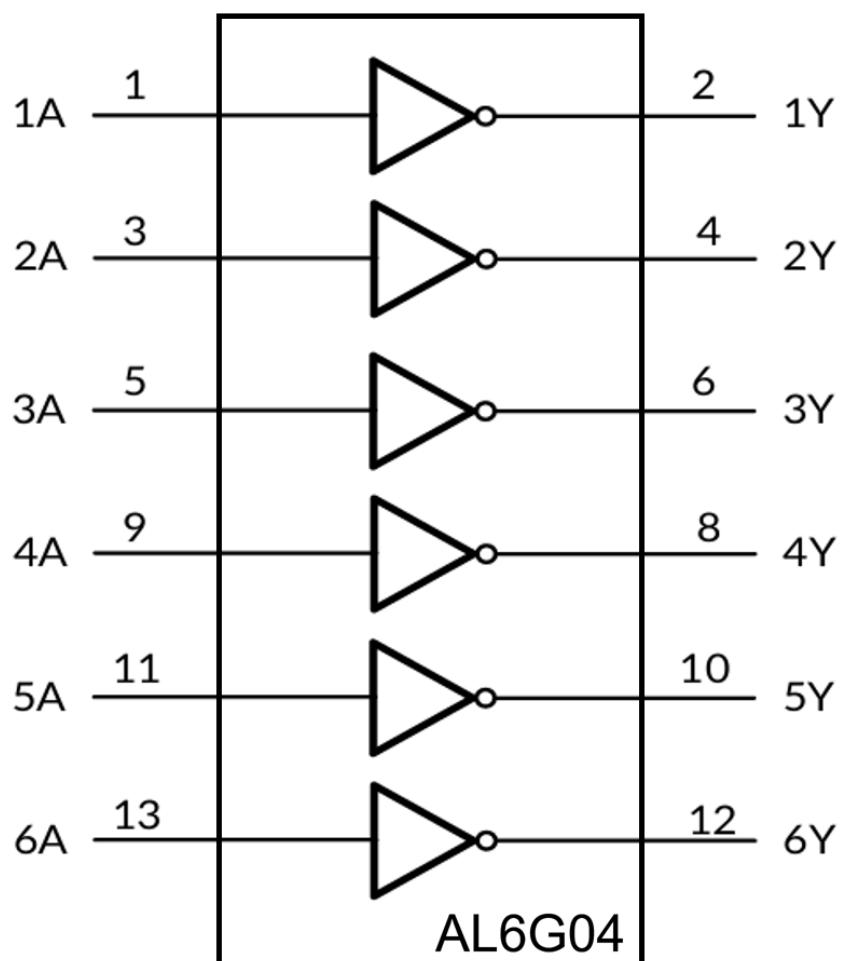
- (1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation.
- (2) This parameter is ensured by design and/or characterization and is not tested in production.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

DC CHARACTERISTICS

Parameter		Conditions	Min	Typ.	Max	Unit
V_{OH}	$I_{OL} = -100 \mu A, V_{CC}=1.65\sim 5.5V$	$-40^{\circ}C \sim +125^{\circ}C$	$V_{CC}-0.1$	-	-	V
	$I_{OL} = -4mA, V_{CC}=1.65V$		1.20	-	-	
	$I_{OL} = -8mA, V_{CC}=2.3V$		1.90	-	-	
	$I_{OL} = -16mA, V_{CC}=3V$		2.40	-	-	
	$I_{OL} = -24mA, V_{CC}=3V$		2.30	-	-	
	$I_{OL} = -32mA, V_{CC}=4.5V$		3.80	-	-	
V_{OL}	$I_{OL} = 100 \mu A, V_{CC}=1.65\sim 5.5V$	$-40^{\circ}C \sim +125^{\circ}C$	-	-	0.10	V
	$I_{OL} = 4mA, V_{CC}=1.65V$		-	-	0.45	
	$I_{OL} = 8mA, V_{CC}=2.3V$		-	-	0.30	
	$I_{OL} = 16mA, V_{CC}=3V$		-	-	0.40	
	$I_{OL} = 24mA, V_{CC}=3V$		-	-	0.55	
	$I_{OL} = 32mA, V_{CC}=4.5V$		-	-	0.55	
I_I	A or B Inputs	$V_I = 5.5V$ or GND, $V_{CC}=0V\sim 5.5V$	$+25^{\circ}C$	± 0.1	± 1	μA
			$-40^{\circ}C \sim +125^{\circ}C$	-	± 5	
I_{off}		V_I or $V_O = 5.5V$, $V_{CC}=0V$	$+25^{\circ}C$	-	± 0.1	μA
			$-40^{\circ}C \sim +125^{\circ}C$	-	-	
I_{cc}		$V_I = 5.5V$ or GND, $I_O=0$, $V_{CC}=1.65V\sim 5.5V$	$+25^{\circ}C$	-	0.1	μA
			$-40^{\circ}C \sim +125^{\circ}C$	-	-	
ΔI_{cc}		One input at $V_{CC}-0.6V$, Other inputs at V_{CC} or GND, $V_{CC}=3V\sim 5.5V$	$-40^{\circ}C \sim +125^{\circ}C$	-	500	μA
C_I	Input Capacitance	$V_I=V_{CC}$ or GND, $V_{CC}=3V$	$+25^{\circ}C$	-	4	-
						pF

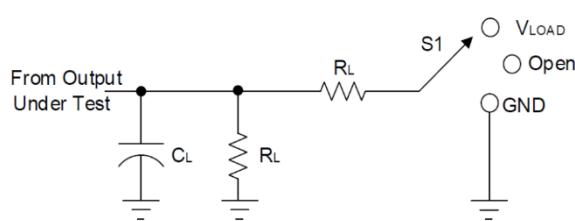
- (1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation
- (2) Limits are 100% production tested at $25^{\circ}C$. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

AiT Semiconductor Inc.


www.ait-ic.com

AL6G04

LOGIC

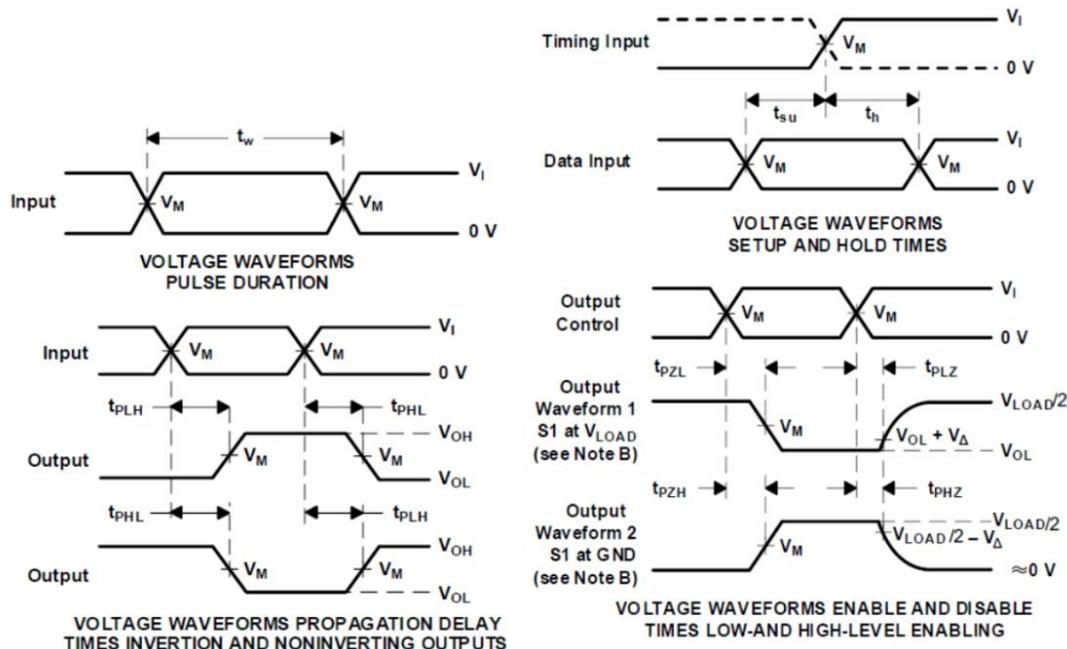

6-CHANNEL INVERTER GATE

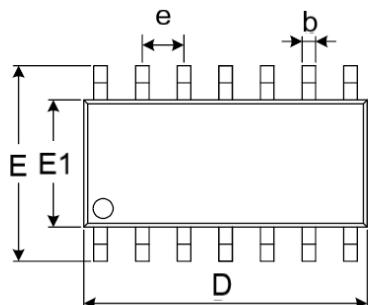
BLOCK DIAGRAM

PARAMETER MEASUREMENT INFORMATION

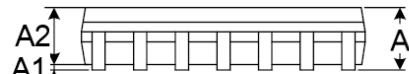
TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PIZ}/t_{PZL}	V_{LOAD}
t_{PHZ}/t_{PZH}	GND

V_{CC}	Inputs		VM	V_{LOAD}	C_L	R_L	V_{Δ}
	V_I	t_r/t_f					
$1.8V \pm 0.15V$	V_{CC}	$\leq 2ns$	$V_{CC}/2$	$2 \times V_{CC}$	$30pF$	$1k\Omega$	$0.15V$
$2.5V \pm 0.2V$	V_{CC}	$\leq 2ns$	$V_{CC}/2$	$2 \times V_{CC}$	$30pF$	500Ω	$0.15V$
$3.3V \pm 0.3V$	$3V$	$\leq 2.5ns$	$1.5V$	$6V$	$50pF$	500Ω	$0.3V$
$5V \pm 0.5V$	V_{CC}	$\leq 2.5ns$	$V_{CC}/2$	$2 \times V_{CC}$	$50pF$	500Ω	$0.3V$

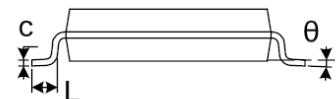


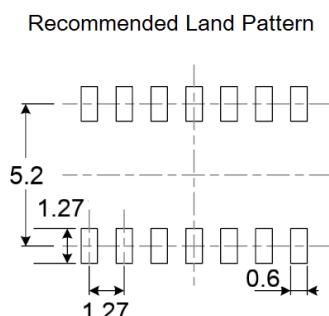

Fig 1. Load Circuit and Voltage Waveforms

- (A) C_L includes probe and jig capacitance.
- (B) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (C) All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, $Z_o = 50 \Omega$.
- (D) The outputs are measured one at a time, with one transition per measurement.
- (E) t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- (F) t_{LPZ} and t_{PZH} are the same as t_{en} .
- (G) t_{PLH} and t_{PHL} are the same as t_{pd} .
- (H) All parameters and waveforms are not applicable to all devices.

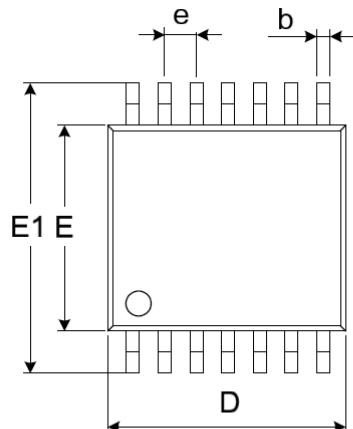


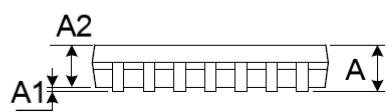
PACKAGE INFORMATION

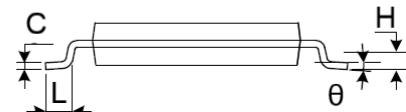

Dimension in SOP14 (Unit: mm)


TOP VIEW

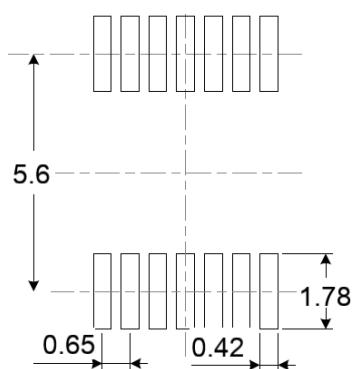
BOTTOM VIEW


SIDE VIEW


Symbol	Millimeters	
	Min	Max
A	1.350	1.750
A1	0.100	0.250
A2	1.350	1.550
b	0.310	0.510
c	0.100	0.250
D	8.450	8.850
e	1.270 BSC	
E	5.800	6.200
E1	3.800	4.000
L	0.400	1.270
θ	0°	8°


Dimension in TSSOP14 (Unit: mm)

TOP VIEW



BOTTOM VIEW

SIDE VIEW

Recommended Land Pattern

Symbol	Millimeters	
	Min	Max
A	-	1.200
A1	0.500	0.150
A2	0.800	1.050
b	0.190	0.300
c	0.090	0.200
D	4.860	5.100
E	4.300	4.500
E1	6.250	6.550
e	0.650 BSC	
L	0.500	0.700
H	0.25 TYP	
θ	1°	7°

AiT Semiconductor Inc.

www.ait-ic.com

AL6G04

LOGIC

6-CHANNEL INVERTER GATE

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or severe property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.